MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  innei Unicode version

Theorem innei 16864
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Proposition Vii of [BourbakiTop1] p. I.3 . (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem innei
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2285 . . . . 5  |-  U. J  =  U. J
21neii1 16845 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
3 ssinss1 3399 . . . 4  |-  ( N 
C_  U. J  ->  ( N  i^i  M )  C_  U. J )
42, 3syl 15 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( N  i^i  M
)  C_  U. J )
543adant3 975 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  C_  U. J
)
6 neii2 16847 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
7 neii2 16847 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  S ) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) )
86, 7anim12dan 810 . . . 4  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )
9 inopn 16647 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  h  e.  J  /\  v  e.  J )  ->  ( h  i^i  v
)  e.  J )
1093expa 1151 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  v  e.  J
)  ->  ( h  i^i  v )  e.  J
)
11 ssin 3393 . . . . . . . . . . . . . 14  |-  ( ( S  C_  h  /\  S  C_  v )  <->  S  C_  (
h  i^i  v )
)
1211biimpi 186 . . . . . . . . . . . . 13  |-  ( ( S  C_  h  /\  S  C_  v )  ->  S  C_  ( h  i^i  v ) )
13 ss2in 3398 . . . . . . . . . . . . 13  |-  ( ( h  C_  N  /\  v  C_  M )  -> 
( h  i^i  v
)  C_  ( N  i^i  M ) )
1412, 13anim12i 549 . . . . . . . . . . . 12  |-  ( ( ( S  C_  h  /\  S  C_  v )  /\  ( h  C_  N  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
1514an4s 799 . . . . . . . . . . 11  |-  ( ( ( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
16 sseq2 3202 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  ( S  C_  g  <->  S  C_  (
h  i^i  v )
) )
17 sseq1 3201 . . . . . . . . . . . . 13  |-  ( g  =  ( h  i^i  v )  ->  (
g  C_  ( N  i^i  M )  <->  ( h  i^i  v )  C_  ( N  i^i  M ) ) )
1816, 17anbi12d 691 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  (
( S  C_  g  /\  g  C_  ( N  i^i  M ) )  <-> 
( S  C_  (
h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) ) )
1918rspcev 2886 . . . . . . . . . . 11  |-  ( ( ( h  i^i  v
)  e.  J  /\  ( S  C_  ( h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2010, 15, 19syl2an 463 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  (
( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2120expr 598 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  -> 
( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2221an32s 779 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  /\  v  e.  J )  ->  ( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2322rexlimdva 2669 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N
) )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2423ex 423 . . . . . 6  |-  ( ( J  e.  Top  /\  h  e.  J )  ->  ( ( S  C_  h  /\  h  C_  N
)  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2524rexlimdva 2669 . . . . 5  |-  ( J  e.  Top  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  -> 
( E. v  e.  J  ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2625imp32 422 . . . 4  |-  ( ( J  e.  Top  /\  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
278, 26syldan 456 . . 3  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
28273impb 1147 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
291neiss2 16840 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
301isnei 16842 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
3129, 30syldan 456 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( ( N  i^i  M )  e.  ( ( nei `  J ) `
 S )  <->  ( ( N  i^i  M )  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
32313adant3 975 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
335, 28, 32mpbir2and 888 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   E.wrex 2546    i^i cin 3153    C_ wss 3154   U.cuni 3829   ` cfv 5257   Topctop 16633   neicnei 16836
This theorem is referenced by:  neifil  17577  islimrs4  25593  neificl  26478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-top 16638  df-nei 16837
  Copyright terms: Public domain W3C validator