MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab Unicode version

Theorem inrab 3605
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
inrab  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  ps ) }

Proof of Theorem inrab
StepHypRef Expression
1 df-rab 2706 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2706 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2ineq12i 3532 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  {
x  |  ( x  e.  A  /\  ps ) } )
4 df-rab 2706 . . 3  |-  { x  e.  A  |  ( ph  /\  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
5 inab 3601 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps ) ) }
6 anandi 802 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  /\  ps )
)  <->  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps )
) )
76abbii 2547 . . . 4  |-  { x  |  ( x  e.  A  /\  ( ph  /\ 
ps ) ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps ) ) }
85, 7eqtr4i 2458 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
94, 8eqtr4i 2458 . 2  |-  { x  e.  A  |  ( ph  /\  ps ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )
103, 9eqtr4i 2458 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   {crab 2701    i^i cin 3311
This theorem is referenced by:  rabnc  3643  ixxin  10922  hashbclem  11689  phiprmpw  13153  submacs  14753  ablfacrp  15612  dfrhm2  15809  ordtbaslem  17240  ordtbas2  17243  ordtopn3  17248  ordtcld3  17251  ordthauslem  17435  pthaus  17658  xkohaus  17673  tsmsfbas  18145  minveclem3b  19317  shftmbl  19421  mumul  20952  ppiub  20976  lgsquadlem2  21127  cusgrasizeindslem2  21471  xppreima  24047  xpinpreima  24292  xpinpreima2  24293  measvuni  24556  subfacp1lem6  24859  cnambfre  26201  itg2addnclem2  26203  anrabdioph  26776  frisusgranb  28245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-in 3319
  Copyright terms: Public domain W3C validator