MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Unicode version

Theorem intasym 5189
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Distinct variable group:    x, y, R

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5182 . . 3  |-  Rel  `' R
2 relin2 4933 . . 3  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3 ssrel 4904 . . 3  |-  ( Rel  ( R  i^i  `' R )  ->  (
( R  i^i  `' R )  C_  _I  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) ) )
41, 2, 3mp2b 10 . 2  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  ->  <. x ,  y >.  e.  _I  ) )
5 elin 3473 . . . . 5  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
6 df-br 4154 . . . . . 6  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
7 vex 2902 . . . . . . . 8  |-  x  e. 
_V
8 vex 2902 . . . . . . . 8  |-  y  e. 
_V
97, 8brcnv 4995 . . . . . . 7  |-  ( x `' R y  <->  y R x )
10 df-br 4154 . . . . . . 7  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
119, 10bitr3i 243 . . . . . 6  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
126, 11anbi12i 679 . . . . 5  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
135, 12bitr4i 244 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
14 df-br 4154 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
158ideq 4965 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
1614, 15bitr3i 243 . . . 4  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1713, 16imbi12i 317 . . 3  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<->  ( ( x R y  /\  y R x )  ->  x  =  y ) )
18172albii 1573 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<-> 
A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
194, 18bitri 241 1  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    e. wcel 1717    i^i cin 3262    C_ wss 3263   <.cop 3760   class class class wbr 4153    _I cid 4434   `'ccnv 4817   Rel wrel 4823
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826
  Copyright terms: Public domain W3C validator