MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Unicode version

Theorem intirr 5192
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Distinct variable group:    x, R

Proof of Theorem intirr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 incom 3476 . . . 4  |-  ( R  i^i  _I  )  =  (  _I  i^i  R
)
21eqeq1i 2394 . . 3  |-  ( ( R  i^i  _I  )  =  (/)  <->  (  _I  i^i  R )  =  (/) )
3 disj2 3618 . . 3  |-  ( (  _I  i^i  R )  =  (/)  <->  _I  C_  ( _V 
\  R ) )
4 reli 4942 . . . 4  |-  Rel  _I
5 ssrel 4904 . . . 4  |-  ( Rel 
_I  ->  (  _I  C_  ( _V  \  R )  <->  A. x A. y (
<. x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) ) )
64, 5ax-mp 8 . . 3  |-  (  _I  C_  ( _V  \  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
72, 3, 63bitri 263 . 2  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
8 equcom 1687 . . . . 5  |-  ( y  =  x  <->  x  =  y )
9 vex 2902 . . . . . 6  |-  y  e. 
_V
109ideq 4965 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
11 df-br 4154 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
128, 10, 113bitr2i 265 . . . 4  |-  ( y  =  x  <->  <. x ,  y >.  e.  _I  )
13 opex 4368 . . . . . . 7  |-  <. x ,  y >.  e.  _V
1413biantrur 493 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  R  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
15 eldif 3273 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  \  R
)  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
1614, 15bitr4i 244 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  R  <->  <. x ,  y
>.  e.  ( _V  \  R ) )
17 df-br 4154 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
1816, 17xchnxbir 301 . . . 4  |-  ( -.  x R y  <->  <. x ,  y >.  e.  ( _V  \  R ) )
1912, 18imbi12i 317 . . 3  |-  ( ( y  =  x  ->  -.  x R y )  <-> 
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
20192albii 1573 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x A. y ( <. x ,  y >.  e.  _I  -> 
<. x ,  y >.  e.  ( _V  \  R
) ) )
21 nfv 1626 . . . 4  |-  F/ y  -.  x R x
22 breq2 4157 . . . . 5  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
2322notbid 286 . . . 4  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
2421, 23equsal 1954 . . 3  |-  ( A. y ( y  =  x  ->  -.  x R y )  <->  -.  x R x )
2524albii 1572 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x  -.  x R x )
267, 20, 253bitr2i 265 1  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1717   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   (/)c0 3571   <.cop 3760   class class class wbr 4153    _I cid 4434   Rel wrel 4823
This theorem is referenced by:  hartogslem1  7444  hausdiag  17598
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825
  Copyright terms: Public domain W3C validator