MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3899
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1  |-  A  e. 
_V
Assertion
Ref Expression
intsn  |-  |^| { A }  =  A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2  |-  A  e. 
_V
2 intsng 3898 . 2  |-  ( A  e.  _V  ->  |^| { A }  =  A )
31, 2ax-mp 8 1  |-  |^| { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1685   _Vcvv 2789   {csn 3641   |^|cint 3863
This theorem is referenced by:  uniintsn  3900  intunsn  3902  op1stb  4568  op2ndb  5154  ssfii  7168  cf0  7873  cflecard  7875  uffix  17612  iotain  27028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ral 2549  df-v 2791  df-un 3158  df-in 3160  df-sn 3647  df-pr 3648  df-int 3864
  Copyright terms: Public domain W3C validator