MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Unicode version

Theorem invdif 3423
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 3418 . 2  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  ( _V  \  ( _V  \  B ) ) )
2 ddif 3321 . . 3  |-  ( _V 
\  ( _V  \  B ) )  =  B
32difeq2i 3304 . 2  |-  ( A 
\  ( _V  \ 
( _V  \  B
) ) )  =  ( A  \  B
)
41, 3eqtri 2316 1  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1632   _Vcvv 2801    \ cdif 3162    i^i cin 3164
This theorem is referenced by:  indif2  3425  difundi  3434  difundir  3435  difindi  3436  difindir  3437  difun1  3441  undif1  3542  difdifdir  3554  dfsup2  7211  dfsup2OLD  7212  nn0supp  10033  fsuppeq  27362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-in 3172
  Copyright terms: Public domain W3C validator