MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Unicode version

Theorem inxp 4817
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem inxp
StepHypRef Expression
1 inopab 4815 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }
2 an4 799 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
3 elin 3359 . . . . . 6  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3359 . . . . . 6  |-  ( y  e.  ( B  i^i  D )  <->  ( y  e.  B  /\  y  e.  D ) )
53, 4anbi12i 680 . . . . 5  |-  ( ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( y  e.  B  /\  y  e.  D
) ) )
62, 5bitr4i 245 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) )  <->  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) )
76opabbii 4084 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ( x  e.  C  /\  y  e.  D ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
81, 7eqtri 2304 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  {
<. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C )  /\  y  e.  ( B  i^i  D ) ) }
9 df-xp 4694 . . 3  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
10 df-xp 4694 . . 3  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
119, 10ineq12i 3369 . 2  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  i^i  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) } )
12 df-xp 4694 . 2  |-  ( ( A  i^i  C )  X.  ( B  i^i  D ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  i^i  C
)  /\  y  e.  ( B  i^i  D ) ) }
138, 11, 123eqtr4i 2314 1  |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1624    e. wcel 1685    i^i cin 3152   {copab 4077    X. cxp 4686
This theorem is referenced by:  xpindi  4818  xpindir  4819  dmxpin  4898  xpssres  4988  xpdisj1  5100  xpdisj2  5101  imainrect  5118  curry1  6171  curry2  6174  fpar  6183  marypha1lem  7181  fpwwe2lem13  8259  hashxplem  11379  sscres  13694  gsumxp  15221  pjfval  16600  pjpm  16602  txbas  17256  txcls  17293  txrest  17319  metreslem  17920  ressxms  18065  ressms  18066  domrancur1b  24599  domrancur1c  24601  selsubf3  25390
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-opab 4079  df-xp 4694  df-rel 4695
  Copyright terms: Public domain W3C validator