MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioo0 Unicode version

Theorem ioo0 10068
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ioo0
StepHypRef Expression
1 iooval 10067 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
21eqeq1d 2077 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) ) )
3 df-ne 2189 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) )
4 rabn0 3096 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  E. x  e.  RR*  ( A  <  x  /\  x  <  B ) )
53, 4bitr3i 240 . . . . 5  |-  ( -. 
{ x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
6 xrlttr 9862 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
763com23 1116 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
873expa 1110 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  < 
x  /\  x  <  B )  ->  A  <  B ) )
98rexlimdva 2394 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  ->  A  <  B ) )
10 qbtwnxr 9914 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
11 qre 9709 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR )
1211rexrd 8311 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  x  e.  RR* )
1312anim1i 545 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <  x  /\  x  < 
B ) ) )
1413reximi2 2376 . . . . . . . 8  |-  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
1510, 14syl 15 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
16153expia 1112 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) ) )
179, 16impbid 181 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  <->  A  <  B ) )
185, 17syl5bb 246 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  A  <  B ) )
19 xrltnle 8320 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -.  B  <_  A ) )
2018, 19bitrd 242 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  -.  B  <_  A ) )
2120con4bid 282 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
222, 21bitrd 242 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 174    /\ wa 356    /\ w3a 896    = wceq 1524    e. wcel 1526    =/= wne 2187   E.wrex 2280   {crab 2282   (/)c0 3077   class class class wbr 3596  (class class class)co 5370    <_ cle 8294   RR*cxr 8297    < clt 8298   QQcq 9704   (,)cioo 10043
This theorem is referenced by:  ioon0  10069  iooid  10071  bndth  17159  ioombl  17623  itgsubstlem  18061  oisbmi  23345  oisbmj  23346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1446  ax-6 1447  ax-7 1448  ax-gen 1449  ax-8 1528  ax-11 1529  ax-13 1530  ax-14 1531  ax-17 1533  ax-12o 1567  ax-10 1581  ax-9 1587  ax-4 1594  ax-16 1780  ax-ext 2051  ax-sep 3711  ax-nul 3719  ax-pow 3755  ax-pr 3779  ax-un 4071  ax-cnex 8223  ax-resscn 8224  ax-1cn 8225  ax-icn 8226  ax-addcl 8227  ax-addrcl 8228  ax-mulcl 8229  ax-mulrcl 8230  ax-mulcom 8231  ax-addass 8232  ax-mulass 8233  ax-distr 8234  ax-i2m1 8235  ax-1ne0 8236  ax-1rid 8237  ax-rnegex 8238  ax-rrecex 8239  ax-cnre 8240  ax-pre-lttri 8241  ax-pre-lttrn 8242  ax-pre-ltadd 8243  ax-pre-mulgt0 8244  ax-pre-sup 8245
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 897  df-3an 898  df-tru 1259  df-ex 1451  df-sb 1741  df-eu 1963  df-mo 1964  df-clab 2057  df-cleq 2062  df-clel 2065  df-ne 2189  df-nel 2190  df-ral 2283  df-rex 2284  df-reu 2285  df-rab 2286  df-v 2482  df-sbc 2656  df-csb 2738  df-dif 2801  df-un 2803  df-in 2805  df-ss 2809  df-pss 2811  df-nul 3078  df-if 3187  df-pw 3248  df-sn 3266  df-pr 3267  df-tp 3268  df-op 3269  df-uni 3435  df-iun 3512  df-br 3597  df-opab 3651  df-mpt 3652  df-tr 3684  df-eprel 3866  df-id 3870  df-po 3875  df-so 3876  df-fr 3913  df-we 3915  df-ord 3956  df-on 3957  df-lim 3958  df-suc 3959  df-om 4234  df-xp 4280  df-rel 4281  df-cnv 4282  df-co 4283  df-dm 4284  df-rn 4285  df-res 4286  df-ima 4287  df-fun 4288  df-fn 4289  df-f 4290  df-f1 4291  df-fo 4292  df-f1o 4293  df-fv 4294  df-ov 5373  df-oprab 5374  df-mpt2 5375  df-1st 5624  df-2nd 5625  df-iota 5780  df-recs 5853  df-rdg 5888  df-er 6125  df-en 6312  df-dom 6313  df-sdom 6314  df-riota 6478  df-sup 6686  df-pnf 8299  df-mnf 8300  df-xr 8301  df-ltxr 8302  df-le 8303  df-sub 8464  df-neg 8465  df-div 8829  df-n 9138  df-n0 9354  df-z 9413  df-uz 9619  df-q 9705  df-ioo 10047
  Copyright terms: Public domain W3C validator