MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioo0 Unicode version

Theorem ioo0 10559
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ioo0
StepHypRef Expression
1 iooval 10558 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
21eqeq1d 2261 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) ) )
3 df-ne 2414 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/) )
4 rabn0 3381 . . . . . 6  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =/=  (/)  <->  E. x  e.  RR*  ( A  <  x  /\  x  <  B ) )
53, 4bitr3i 244 . . . . 5  |-  ( -. 
{ x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
6 xrlttr 10353 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
763com23 1162 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <  x  /\  x  <  B )  ->  A  <  B
) )
873expa 1156 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  < 
x  /\  x  <  B )  ->  A  <  B ) )
98rexlimdva 2629 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  ->  A  <  B ) )
10 qbtwnxr 10405 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
11 qre 10200 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR )
1211rexrd 8761 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  x  e.  RR* )
1312anim1i 554 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <  x  /\  x  < 
B ) ) )
1413reximi2 2611 . . . . . . . 8  |-  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
1510, 14syl 17 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) )
16153expia 1158 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <  B ) ) )
179, 16impbid 185 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <  B )  <->  A  <  B ) )
185, 17syl5bb 250 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  A  <  B ) )
19 xrltnle 8771 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -.  B  <_  A ) )
2018, 19bitrd 246 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  -.  B  <_  A ) )
2120con4bid 286 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) }  =  (/)  <->  B  <_  A ) )
222, 21bitrd 246 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   {crab 2512   (/)c0 3362   class class class wbr 3920  (class class class)co 5710   RR*cxr 8746    < clt 8747    <_ cle 8748   QQcq 10195   (,)cioo 10534
This theorem is referenced by:  ioon0  10560  iooid  10562  bndth  18288  ioombl  18754  itgsubstlem  19227  oisbmi  24669  oisbmj  24670
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-ioo 10538
  Copyright terms: Public domain W3C validator