MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Unicode version

Theorem ioorf 19496
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
ioorf  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)

Proof of Theorem ioorf
Dummy variables  a 
b  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
2 ioof 11033 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5620 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4 ovelrn 6251 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b ) ) )
52, 3, 4mp2b 10 . . 3  |-  ( x  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  x  =  ( a (,) b ) )
6 0le0 10112 . . . . . . . . 9  |-  0  <_  0
7 df-br 4238 . . . . . . . . 9  |-  ( 0  <_  0  <->  <. 0 ,  0 >.  e.  <_  )
86, 7mpbi 201 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  <_
9 0xr 9162 . . . . . . . . 9  |-  0  e.  RR*
10 opelxpi 4939 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  <. 0 ,  0 >.  e.  (
RR*  X.  RR* ) )
119, 9, 10mp2an 655 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  (
RR*  X.  RR* )
12 elin 3516 . . . . . . . 8  |-  ( <.
0 ,  0 >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. 0 ,  0 >.  e. 
<_  /\  <. 0 ,  0
>.  e.  ( RR*  X.  RR* ) ) )
138, 11, 12mpbir2an 888 . . . . . . 7  |-  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) )
1413a1i 11 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  x  =  (/) )  ->  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
15 simplr 733 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =  ( a (,) b ) )
1615supeq1d 7480 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  sup ( ( a (,) b ) ,  RR* ,  `'  <  ) )
17 simplll 736 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  e.  RR* )
18 simpllr 737 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
b  e.  RR* )
19 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
2019neneqad 2680 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =/=  (/) )
2115, 20eqnetrrd 2627 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a (,) b
)  =/=  (/) )
22 df-ioo 10951 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
23 idd 23 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <  b ) )
24 xrltle 10773 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <_  b ) )
25 idd 23 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <  w ) )
26 xrltle 10773 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <_  w ) )
2722, 23, 24, 25, 26ixxlb 10969 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  `'  <  )  =  a )
2817, 18, 21, 27syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  `'  <  )  =  a )
2916, 28eqtrd 2474 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  a )
3015supeq1d 7480 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  sup ( ( a (,) b ) ,  RR* ,  <  ) )
3122, 23, 24, 25, 26ixxub 10968 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  <  )  =  b )
3217, 18, 21, 31syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  <  )  =  b )
3330, 32eqtrd 2474 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  b )
3429, 33opeq12d 4016 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  =  <. a ,  b
>. )
35 ioon0 10973 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
( a (,) b
)  =/=  (/)  <->  a  <  b ) )
3635ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( ( a (,) b )  =/=  (/)  <->  a  <  b ) )
3721, 36mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <  b )
38 xrltle 10773 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
a  <  b  ->  a  <_  b ) )
3938ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a  <  b  ->  a  <_  b )
)
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <_  b )
41 df-br 4238 . . . . . . . . 9  |-  ( a  <_  b  <->  <. a ,  b >.  e.  <_  )
4240, 41sylib 190 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  <_  )
43 opelxpi 4939 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  <. a ,  b >.  e.  (
RR*  X.  RR* ) )
4443ad2antrr 708 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  ( RR*  X.  RR* )
)
45 elin 3516 . . . . . . . 8  |-  ( <.
a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. a ,  b >.  e.  <_  /\ 
<. a ,  b >.  e.  ( RR*  X.  RR* )
) )
4642, 44, 45sylanbrc 647 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4734, 46eqeltrd 2516 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4814, 47ifclda 3790 . . . . 5  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  x  =  (
a (,) b ) )  ->  if (
x  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4948ex 425 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
x  =  ( a (,) b )  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) ) )
5049rexlimivv 2841 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b )  ->  if ( x  =  (/) ,  <. 0 ,  0 >. ,  <. sup ( x ,  RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
515, 50sylbi 189 . 2  |-  ( x  e.  ran  (,)  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
521, 51fmpti 5921 1  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727    =/= wne 2605   E.wrex 2712    i^i cin 3305   (/)c0 3613   ifcif 3763   ~Pcpw 3823   <.cop 3841   class class class wbr 4237    e. cmpt 4291    X. cxp 4905   `'ccnv 4906   ran crn 4908    Fn wfn 5478   -->wf 5479  (class class class)co 6110   supcsup 7474   RRcr 9020   0cc0 9021   RR*cxr 9150    < clt 9151    <_ cle 9152   (,)cioo 10947
This theorem is referenced by:  ioorcl  19500  uniioombllem2  19506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-n0 10253  df-z 10314  df-uz 10520  df-q 10606  df-ioo 10951
  Copyright terms: Public domain W3C validator