MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Unicode version

Theorem ioorf 19422
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
Assertion
Ref Expression
ioorf  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)

Proof of Theorem ioorf
Dummy variables  a 
b  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
2 ioof 10962 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 5554 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4 ovelrn 6185 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b ) ) )
52, 3, 4mp2b 10 . . 3  |-  ( x  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  x  =  ( a (,) b ) )
6 0le0 10041 . . . . . . . . 9  |-  0  <_  0
7 df-br 4177 . . . . . . . . 9  |-  ( 0  <_  0  <->  <. 0 ,  0 >.  e.  <_  )
86, 7mpbi 200 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  <_
9 0xr 9091 . . . . . . . . 9  |-  0  e.  RR*
10 opelxpi 4873 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  <. 0 ,  0 >.  e.  (
RR*  X.  RR* ) )
119, 9, 10mp2an 654 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  (
RR*  X.  RR* )
12 elin 3494 . . . . . . . 8  |-  ( <.
0 ,  0 >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. 0 ,  0 >.  e. 
<_  /\  <. 0 ,  0
>.  e.  ( RR*  X.  RR* ) ) )
138, 11, 12mpbir2an 887 . . . . . . 7  |-  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) )
1413a1i 11 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  x  =  (/) )  ->  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
15 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =  ( a (,) b ) )
1615supeq1d 7413 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  sup ( ( a (,) b ) ,  RR* ,  `'  <  ) )
17 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  e.  RR* )
18 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
b  e.  RR* )
19 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
2019neneqad 2641 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =/=  (/) )
2115, 20eqnetrrd 2591 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a (,) b
)  =/=  (/) )
22 df-ioo 10880 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
23 idd 22 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <  b ) )
24 xrltle 10702 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <_  b ) )
25 idd 22 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <  w ) )
26 xrltle 10702 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <_  w ) )
2722, 23, 24, 25, 26ixxlb 10898 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  `'  <  )  =  a )
2817, 18, 21, 27syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  `'  <  )  =  a )
2916, 28eqtrd 2440 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  `'  <  )  =  a )
3015supeq1d 7413 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  sup ( ( a (,) b ) ,  RR* ,  <  ) )
3122, 23, 24, 25, 26ixxub 10897 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  <  )  =  b )
3217, 18, 21, 31syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  <  )  =  b )
3330, 32eqtrd 2440 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  b )
3429, 33opeq12d 3956 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  =  <. a ,  b
>. )
35 ioon0 10902 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
( a (,) b
)  =/=  (/)  <->  a  <  b ) )
3635ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( ( a (,) b )  =/=  (/)  <->  a  <  b ) )
3721, 36mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <  b )
38 xrltle 10702 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
a  <  b  ->  a  <_  b ) )
3938ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a  <  b  ->  a  <_  b )
)
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <_  b )
41 df-br 4177 . . . . . . . . 9  |-  ( a  <_  b  <->  <. a ,  b >.  e.  <_  )
4240, 41sylib 189 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  <_  )
43 opelxpi 4873 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  <. a ,  b >.  e.  (
RR*  X.  RR* ) )
4443ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  ( RR*  X.  RR* )
)
45 elin 3494 . . . . . . . 8  |-  ( <.
a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. a ,  b >.  e.  <_  /\ 
<. a ,  b >.  e.  ( RR*  X.  RR* )
) )
4642, 44, 45sylanbrc 646 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4734, 46eqeltrd 2482 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >.  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4814, 47ifclda 3730 . . . . 5  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  x  =  (
a (,) b ) )  ->  if (
x  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
4948ex 424 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
x  =  ( a (,) b )  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) ) )
5049rexlimivv 2799 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b )  ->  if ( x  =  (/) ,  <. 0 ,  0 >. ,  <. sup ( x ,  RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
515, 50sylbi 188 . 2  |-  ( x  e.  ran  (,)  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
521, 51fmpti 5855 1  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671    i^i cin 3283   (/)c0 3592   ifcif 3703   ~Pcpw 3763   <.cop 3781   class class class wbr 4176    e. cmpt 4230    X. cxp 4839   `'ccnv 4840   ran crn 4842    Fn wfn 5412   -->wf 5413  (class class class)co 6044   supcsup 7407   RRcr 8949   0cc0 8950   RR*cxr 9079    < clt 9080    <_ cle 9081   (,)cioo 10876
This theorem is referenced by:  ioorcl  19426  uniioombllem2  19432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-n0 10182  df-z 10243  df-uz 10449  df-q 10535  df-ioo 10880
  Copyright terms: Public domain W3C validator