MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5253
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )

Proof of Theorem iota4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2160 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 bi2 189 . . . . . 6  |-  ( (
ph 
<->  x  =  z )  ->  ( x  =  z  ->  ph ) )
32alimi 1549 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  A. x
( x  =  z  ->  ph ) )
4 sb2 1976 . . . . 5  |-  ( A. x ( x  =  z  ->  ph )  ->  [ z  /  x ] ph )
53, 4syl 15 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  [ z  /  x ] ph )
6 iotaval 5246 . . . . . 6  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
76eqcomd 2301 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  z  =  ( iota x ph ) )
8 dfsbcq2 3007 . . . . 5  |-  ( z  =  ( iota x ph )  ->  ( [ z  /  x ] ph 
<-> 
[. ( iota x ph )  /  x ]. ph ) )
97, 8syl 15 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( [ z  /  x ] ph  <->  [. ( iota x ph )  /  x ]. ph ) )
105, 9mpbid 201 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
1110exlimiv 1624 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
121, 11sylbi 187 1  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530   E.wex 1531    = wceq 1632   [wsb 1638   E!weu 2156   [.wsbc 3004   iotacio 5233
This theorem is referenced by:  iota4an  5254  iotacl  5258  pm14.24  27735  sbiota1  27737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-sbc 3005  df-un 3170  df-sn 3659  df-pr 3660  df-uni 3844  df-iota 5235
  Copyright terms: Public domain W3C validator