Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5403
 Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4

Proof of Theorem iota4
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2266 . 2
2 bi2 190 . . . . . 6
32alimi 1565 . . . . 5
4 sb2 2079 . . . . 5
53, 4syl 16 . . . 4
6 iotaval 5396 . . . . . 6
76eqcomd 2417 . . . . 5
8 dfsbcq2 3132 . . . . 5
97, 8syl 16 . . . 4
105, 9mpbid 202 . . 3
1110exlimiv 1641 . 2
121, 11sylbi 188 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1546  wex 1547   wceq 1649  wsb 1655  weu 2262  wsbc 3129  cio 5383 This theorem is referenced by:  iota4an  5404  iotacl  5408  pm14.24  27508  sbiota1  27510 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-rex 2680  df-v 2926  df-sbc 3130  df-un 3293  df-sn 3788  df-pr 3789  df-uni 3984  df-iota 5385
 Copyright terms: Public domain W3C validator