MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4an Unicode version

Theorem iota4an 5428
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 5427 . 2  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ph  /\  ps ) )
2 iotaex 5426 . . . 4  |-  ( iota
x ( ph  /\  ps ) )  e.  _V
3 simpl 444 . . . . 5  |-  ( (
ph  /\  ps )  ->  ph )
43sbcth 3167 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
52, 4ax-mp 8 . . 3  |-  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )
6 sbcimg 3194 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  ( [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
72, 6ax-mp 8 . . 3  |-  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ( ph  /\ 
ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) )
85, 7mpbi 200 . 2  |-  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )
91, 8syl 16 1  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   E!weu 2280   _Vcvv 2948   [.wsbc 3153   iotacio 5407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-sn 3812  df-pr 3813  df-uni 4008  df-iota 5409
  Copyright terms: Public domain W3C validator