Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaequ Unicode version

Theorem iotaequ 27135
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaequ  |-  ( iota
x x  =  y )  =  y
Distinct variable group:    x, y

Proof of Theorem iotaequ
StepHypRef Expression
1 iotaval 5333 . 2  |-  ( A. x ( x  =  y  <->  x  =  y
)  ->  ( iota x x  =  y
)  =  y )
2 biid 227 . 2  |-  ( x  =  y  <->  x  =  y )
31, 2mpg 1553 1  |-  ( iota
x x  =  y )  =  y
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1647   iotacio 5320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-rex 2634  df-v 2875  df-sbc 3078  df-un 3243  df-sn 3735  df-pr 3736  df-uni 3930  df-iota 5322
  Copyright terms: Public domain W3C validator