Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Unicode version

Theorem iotavalsb 27633
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x, z)    ps( x, y, z)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 1718 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 df-eu 2147 . . 3  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
3 iotavalb 27630 . . . 4  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  <->  ( iota x ph )  =  y ) )
4 dfsbcq 2993 . . . . 5  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
54eqcoms 2286 . . . 4  |-  ( ( iota x ph )  =  y  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
63, 5syl6bi 219 . . 3  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
72, 6sylbir 204 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  ( A. x
( ph  <->  x  =  y
)  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
81, 7mpcom 32 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   E.wex 1528    = wceq 1623   E!weu 2143   [.wsbc 2991   iotacio 5217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-sbc 2992  df-un 3157  df-sn 3646  df-pr 3647  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator