Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotavalsb Unicode version

Theorem iotavalsb 27505
Description: Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotavalsb  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x, z)    ps( x, y, z)

Proof of Theorem iotavalsb
StepHypRef Expression
1 19.8a 1758 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 df-eu 2262 . . 3  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
3 iotavalb 27502 . . . 4  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  <->  ( iota x ph )  =  y ) )
4 dfsbcq 3127 . . . . 5  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
54eqcoms 2411 . . . 4  |-  ( ( iota x ph )  =  y  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
63, 5syl6bi 220 . . 3  |-  ( E! x ph  ->  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
72, 6sylbir 205 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  ( A. x
( ph  <->  x  =  y
)  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) ) )
81, 7mpcom 34 1  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. y  /  z ]. ps  <->  [. ( iota x ph )  /  z ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546   E.wex 1547    = wceq 1649   E!weu 2258   [.wsbc 3125   iotacio 5379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-rex 2676  df-v 2922  df-sbc 3126  df-un 3289  df-sn 3784  df-pr 3785  df-uni 3980  df-iota 5381
  Copyright terms: Public domain W3C validator