MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Unicode version

Theorem ip0i 21397
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where  J is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ip1i.a  |-  A  e.  X
ip1i.b  |-  B  e.  X
ip1i.c  |-  C  e.  X
ip1i.6  |-  N  =  ( normCV `  U )
ip0i.j  |-  J  e.  CC
Assertion
Ref Expression
ip0i  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 9812 . . . 4  |-  2  e.  CC
2 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 ip1i.6 . . . . . . 7  |-  N  =  ( normCV `  U )
4 ip1i.9 . . . . . . . 8  |-  U  e.  CPreHil
OLD
54phnvi 21388 . . . . . . 7  |-  U  e.  NrmCVec
6 ip1i.a . . . . . . . 8  |-  A  e.  X
7 ip0i.j . . . . . . . . 9  |-  J  e.  CC
8 ip1i.c . . . . . . . . 9  |-  C  e.  X
9 ip1i.4 . . . . . . . . . 10  |-  S  =  ( .s OLD `  U
)
102, 9nvscl 21178 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  J  e.  CC  /\  C  e.  X )  ->  ( J S C )  e.  X )
115, 7, 8, 10mp3an 1277 . . . . . . . 8  |-  ( J S C )  e.  X
12 ip1i.2 . . . . . . . . 9  |-  G  =  ( +v `  U
)
132, 12nvgcl 21170 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( J S C )  e.  X )  ->  ( A G ( J S C ) )  e.  X )
145, 6, 11, 13mp3an 1277 . . . . . . 7  |-  ( A G ( J S C ) )  e.  X
152, 3, 5, 14nvcli 21220 . . . . . 6  |-  ( N `
 ( A G ( J S C ) ) )  e.  RR
1615recni 8845 . . . . 5  |-  ( N `
 ( A G ( J S C ) ) )  e.  CC
1716sqcli 11180 . . . 4  |-  ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  e.  CC
187negcli 9110 . . . . . . . . 9  |-  -u J  e.  CC
192, 9nvscl 21178 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u J  e.  CC  /\  C  e.  X )  ->  ( -u J S C )  e.  X )
205, 18, 8, 19mp3an 1277 . . . . . . . 8  |-  ( -u J S C )  e.  X
212, 12nvgcl 21170 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u J S C )  e.  X )  -> 
( A G (
-u J S C ) )  e.  X
)
225, 6, 20, 21mp3an 1277 . . . . . . 7  |-  ( A G ( -u J S C ) )  e.  X
232, 3, 5, 22nvcli 21220 . . . . . 6  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  RR
2423recni 8845 . . . . 5  |-  ( N `
 ( A G ( -u J S C ) ) )  e.  CC
2524sqcli 11180 . . . 4  |-  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  e.  CC
261, 17, 25subdii 9224 . . 3  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
271, 17mulcli 8838 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  e.  CC
281, 25mulcli 8838 . . . 4  |-  ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC
29 ip1i.b . . . . . . . 8  |-  B  e.  X
302, 3, 5, 29nvcli 21220 . . . . . . 7  |-  ( N `
 B )  e.  RR
3130recni 8845 . . . . . 6  |-  ( N `
 B )  e.  CC
3231sqcli 11180 . . . . 5  |-  ( ( N `  B ) ^ 2 )  e.  CC
331, 32mulcli 8838 . . . 4  |-  ( 2  x.  ( ( N `
 B ) ^
2 ) )  e.  CC
34 pnpcan2 9083 . . . 4  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  e.  CC  /\  (
2  x.  ( ( N `  B ) ^ 2 ) )  e.  CC )  -> 
( ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  +  ( 2  x.  (
( N `  B
) ^ 2 ) ) )  -  (
( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( J S C ) ) ) ^
2 ) )  -  ( 2  x.  (
( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) ) )
3527, 28, 33, 34mp3an 1277 . . 3  |-  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  -  ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
3626, 35eqtr4i 2307 . 2  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )  -  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) ) )
37 eqid 2284 . . . . . . . . . 10  |-  ( 1st `  U )  =  ( 1st `  U )
3837nvvc 21165 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3912vafval 21153 . . . . . . . . . 10  |-  G  =  ( 1st `  ( 1st `  U ) )
4039vcablo 21107 . . . . . . . . 9  |-  ( ( 1st `  U )  e.  CVec OLD  ->  G  e. 
AbelOp )
415, 38, 40mp2b 9 . . . . . . . 8  |-  G  e. 
AbelOp
426, 29, 113pm3.2i 1130 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X )
432, 12bafval 21154 . . . . . . . . 9  |-  X  =  ran  G
4443ablo32 20947 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B ) )
4541, 42, 44mp2an 653 . . . . . . 7  |-  ( ( A G B ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G B )
4645fveq2i 5489 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G B ) )
4746oveq1i 5830 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )
48 neg1cn 9809 . . . . . . . . . 10  |-  -u 1  e.  CC
492, 9nvscl 21178 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
505, 48, 29, 49mp3an 1277 . . . . . . . . 9  |-  ( -u
1 S B )  e.  X
516, 50, 113pm3.2i 1130 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X )
5243ablo32 20947 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u
1 S B ) ) )
5341, 51, 52mp2an 653 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  =  ( ( A G ( J S C ) ) G ( -u 1 S B ) )
5453fveq2i 5489 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  =  ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) )
5554oveq1i 5830 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
5647, 55oveq12i 5832 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( ( N `
 ( ( A G ( J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G ( J S C ) ) G ( -u
1 S B ) ) ) ^ 2 ) )
572, 12, 9, 3phpar 21396 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) ) )
584, 14, 29, 57mp3an 1277 . . . 4  |-  ( ( ( N `  (
( A G ( J S C ) ) G B ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( J S C ) ) ) ^
2 )  +  ( ( N `  B
) ^ 2 ) ) )
591, 17, 32adddii 8843 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
6056, 58, 593eqtri 2308 . . 3  |-  ( ( ( N `  (
( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) ) ^
2 ) )  =  ( ( 2  x.  ( ( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
616, 29, 203pm3.2i 1130 . . . . . . . 8  |-  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X )
6243ablo32 20947 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B ) )
6341, 61, 62mp2an 653 . . . . . . 7  |-  ( ( A G B ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G B )
6463fveq2i 5489 . . . . . 6  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G B ) )
6564oveq1i 5830 . . . . 5  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )
666, 50, 203pm3.2i 1130 . . . . . . . 8  |-  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X )
6743ablo32 20947 . . . . . . . 8  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( -u 1 S B )  e.  X  /\  ( -u J S C )  e.  X ) )  ->  ( ( A G ( -u 1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
6841, 66, 67mp2an 653 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  =  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) )
6968fveq2i 5489 . . . . . 6  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  =  ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) )
7069oveq1i 5830 . . . . 5  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 )
7165, 70oveq12i 5832 . . . 4  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )
722, 12, 9, 3phpar 21396 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( A G ( -u J S C ) )  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( ( A G ( -u J S C ) ) G B ) ) ^
2 )  +  ( ( N `  (
( A G (
-u J S C ) ) G (
-u 1 S B ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 B ) ^
2 ) ) ) )
734, 22, 29, 72mp3an 1277 . . . 4  |-  ( ( ( N `  (
( A G (
-u J S C ) ) G B ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u J S C ) ) G ( -u 1 S B ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )
741, 25, 32adddii 8843 . . . 4  |-  ( 2  x.  ( ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `  B ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) )
7571, 73, 743eqtri 2308 . . 3  |-  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) )  =  ( ( 2  x.  ( ( N `
 ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )
7660, 75oveq12i 5832 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( 2  x.  (
( N `  ( A G ( J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `  B ) ^ 2 ) ) )  -  ( ( 2  x.  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) )  +  ( 2  x.  ( ( N `
 B ) ^
2 ) ) ) )
772, 12nvgcl 21170 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
785, 6, 29, 77mp3an 1277 . . . . . . 7  |-  ( A G B )  e.  X
792, 12nvgcl 21170 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G B ) G ( J S C ) )  e.  X )
805, 78, 11, 79mp3an 1277 . . . . . 6  |-  ( ( A G B ) G ( J S C ) )  e.  X
812, 3, 5, 80nvcli 21220 . . . . 5  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  RR
8281recni 8845 . . . 4  |-  ( N `
 ( ( A G B ) G ( J S C ) ) )  e.  CC
8382sqcli 11180 . . 3  |-  ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  e.  CC
842, 12nvgcl 21170 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
855, 6, 50, 84mp3an 1277 . . . . . . 7  |-  ( A G ( -u 1 S B ) )  e.  X
862, 12nvgcl 21170 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G ( J S C ) )  e.  X )
875, 85, 11, 86mp3an 1277 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( J S C ) )  e.  X
882, 3, 5, 87nvcli 21220 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  RR
8988recni 8845 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( J S C ) ) )  e.  CC
9089sqcli 11180 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  e.  CC
912, 12nvgcl 21170 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G B ) G ( -u J S C ) )  e.  X )
925, 78, 20, 91mp3an 1277 . . . . . 6  |-  ( ( A G B ) G ( -u J S C ) )  e.  X
932, 3, 5, 92nvcli 21220 . . . . 5  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  RR
9493recni 8845 . . . 4  |-  ( N `
 ( ( A G B ) G ( -u J S C ) ) )  e.  CC
9594sqcli 11180 . . 3  |-  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
962, 12nvgcl 21170 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( -u J S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G (
-u J S C ) )  e.  X
)
975, 85, 20, 96mp3an 1277 . . . . . 6  |-  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) )  e.  X
982, 3, 5, 97nvcli 21220 . . . . 5  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  RR
9998recni 8845 . . . 4  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) )  e.  CC
10099sqcli 11180 . . 3  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u J S C ) ) ) ^ 2 )  e.  CC
10183, 90, 95, 100addsub4i 9138 . 2  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  +  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 ) )  -  ( ( ( N `  (
( A G B ) G ( -u J S C ) ) ) ^ 2 )  +  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )
10236, 76, 1013eqtr2ri 2311 1  |-  ( ( ( ( N `  ( ( A G B ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u J S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( J S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u J S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( J S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u J S C ) ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 934    = wceq 1623    e. wcel 1685   ` cfv 5221  (class class class)co 5820   1stc1st 6082   CCcc 8731   1c1 8734    + caddc 8736    x. cmul 8738    - cmin 9033   -ucneg 9034   2c2 9791   ^cexp 11100   AbelOpcablo 20942   CVec
OLDcvc 21095   NrmCVeccnv 21134   +vcpv 21135   BaseSetcba 21136   .s
OLDcns 21137   normCVcnmcv 21140   .i OLDcdip 21267   CPreHil OLDccphlo 21384
This theorem is referenced by:  ip1ilem  21398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-seq 11043  df-exp 11101  df-grpo 20852  df-ablo 20943  df-vc 21096  df-nv 21142  df-va 21145  df-ba 21146  df-sm 21147  df-0v 21148  df-nmcv 21150  df-ph 21385
  Copyright terms: Public domain W3C validator