MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Unicode version

Theorem ip2i 22321
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ip2i.8  |-  A  e.  X
ip2i.9  |-  B  e.  X
Assertion
Ref Expression
ip2i  |-  ( ( 2 S A ) P B )  =  ( 2  x.  ( A P B ) )

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6  |-  U  e.  CPreHil
OLD
21phnvi 22309 . . . . 5  |-  U  e.  NrmCVec
3 ip2i.8 . . . . . 6  |-  A  e.  X
4 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
5 ip1i.2 . . . . . . 7  |-  G  =  ( +v `  U
)
64, 5nvgcl 22091 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  e.  X )  ->  ( A G A )  e.  X )
72, 3, 3, 6mp3an 1279 . . . . 5  |-  ( A G A )  e.  X
8 ip2i.9 . . . . 5  |-  B  e.  X
9 ip1i.7 . . . . . 6  |-  P  =  ( .i OLD `  U
)
104, 9dipcl 22203 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( A G A )  e.  X  /\  B  e.  X )  ->  (
( A G A ) P B )  e.  CC )
112, 7, 8, 10mp3an 1279 . . . 4  |-  ( ( A G A ) P B )  e.  CC
1211addid1i 9245 . . 3  |-  ( ( ( A G A ) P B )  +  0 )  =  ( ( A G A ) P B )
13 ip1i.4 . . . . . . . 8  |-  S  =  ( .s OLD `  U
)
14 eqid 2435 . . . . . . . 8  |-  ( 0vec `  U )  =  (
0vec `  U )
154, 5, 13, 14nvrinv 22126 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
) )
162, 3, 15mp2an 654 . . . . . 6  |-  ( A G ( -u 1 S A ) )  =  ( 0vec `  U
)
1716oveq1i 6083 . . . . 5  |-  ( ( A G ( -u
1 S A ) ) P B )  =  ( ( 0vec `  U ) P B )
184, 14, 9dip0l 22209 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( 0vec `  U ) P B )  =  0 )
192, 8, 18mp2an 654 . . . . 5  |-  ( (
0vec `  U ) P B )  =  0
2017, 19eqtri 2455 . . . 4  |-  ( ( A G ( -u
1 S A ) ) P B )  =  0
2120oveq2i 6084 . . 3  |-  ( ( ( A G A ) P B )  +  ( ( A G ( -u 1 S A ) ) P B ) )  =  ( ( ( A G A ) P B )  +  0 )
22 df-2 10050 . . . . . 6  |-  2  =  ( 1  +  1 )
2322oveq1i 6083 . . . . 5  |-  ( 2 S A )  =  ( ( 1  +  1 ) S A )
24 ax-1cn 9040 . . . . . . . 8  |-  1  e.  CC
2524, 24, 33pm3.2i 1132 . . . . . . 7  |-  ( 1  e.  CC  /\  1  e.  CC  /\  A  e.  X )
264, 5, 13nvdir 22104 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
1  e.  CC  /\  1  e.  CC  /\  A  e.  X ) )  -> 
( ( 1  +  1 ) S A )  =  ( ( 1 S A ) G ( 1 S A ) ) )
272, 25, 26mp2an 654 . . . . . 6  |-  ( ( 1  +  1 ) S A )  =  ( ( 1 S A ) G ( 1 S A ) )
284, 13nvsid 22100 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
292, 3, 28mp2an 654 . . . . . . 7  |-  ( 1 S A )  =  A
3029, 29oveq12i 6085 . . . . . 6  |-  ( ( 1 S A ) G ( 1 S A ) )  =  ( A G A )
3127, 30eqtri 2455 . . . . 5  |-  ( ( 1  +  1 ) S A )  =  ( A G A )
3223, 31eqtri 2455 . . . 4  |-  ( 2 S A )  =  ( A G A )
3332oveq1i 6083 . . 3  |-  ( ( 2 S A ) P B )  =  ( ( A G A ) P B )
3412, 21, 333eqtr4ri 2466 . 2  |-  ( ( 2 S A ) P B )  =  ( ( ( A G A ) P B )  +  ( ( A G (
-u 1 S A ) ) P B ) )
354, 5, 13, 9, 1, 3, 3, 8ip1i 22320 . 2  |-  ( ( ( A G A ) P B )  +  ( ( A G ( -u 1 S A ) ) P B ) )  =  ( 2  x.  ( A P B ) )
3634, 35eqtri 2455 1  |-  ( ( 2 S A ) P B )  =  ( 2  x.  ( A P B ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987   -ucneg 9284   2c2 10041   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s
OLDcns 22058   0veccn0v 22059   .i
OLDcdip 22188   CPreHil OLDccphlo 22305
This theorem is referenced by:  ipdirilem  22322
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-grpo 21771  df-gid 21772  df-ginv 21773  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-nmcv 22071  df-dip 22189  df-ph 22306
  Copyright terms: Public domain W3C validator