MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassi Unicode version

Theorem ipassi 21380
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
Assertion
Ref Expression
ipassi  |-  ( ( A  e.  CC  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )

Proof of Theorem ipassi
StepHypRef Expression
1 oveq2 5800 . . . . . . 7  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( A S B )  =  ( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) )
21oveq1d 5807 . . . . . 6  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( A S B ) P C )  =  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P C ) )
3 oveq1 5799 . . . . . . 7  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( B P C )  =  ( if ( B  e.  X ,  B ,  ( 0vec `  U
) ) P C ) )
43oveq2d 5808 . . . . . 6  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( A  x.  ( B P C ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) )
52, 4eqeq12d 2272 . . . . 5  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( ( A S B ) P C )  =  ( A  x.  ( B P C ) )  <->  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) ) )
65imbi2d 309 . . . 4  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( A  e.  CC  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )  <-> 
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) ) ) )
7 oveq2 5800 . . . . . 6  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P C )  =  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
8 oveq2 5800 . . . . . . 7  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C )  =  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
98oveq2d 5808 . . . . . 6  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) )
107, 9eqeq12d 2272 . . . . 5  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  <->  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) ) )
1110imbi2d 309 . . . 4  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) )  <-> 
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) )  =  ( A  x.  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) ) ) ) )
12 ip1i.1 . . . . 5  |-  X  =  ( BaseSet `  U )
13 ip1i.2 . . . . 5  |-  G  =  ( +v `  U
)
14 ip1i.4 . . . . 5  |-  S  =  ( .s OLD `  U
)
15 ip1i.7 . . . . 5  |-  P  =  ( .i OLD `  U
)
16 ip1i.9 . . . . 5  |-  U  e.  CPreHil
OLD
17 eqid 2258 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
1812, 17, 16elimph 21359 . . . . 5  |-  if ( B  e.  X ,  B ,  ( 0vec `  U ) )  e.  X
1912, 17, 16elimph 21359 . . . . 5  |-  if ( C  e.  X ,  C ,  ( 0vec `  U ) )  e.  X
2012, 13, 14, 15, 16, 18, 19ipasslem11 21379 . . . 4  |-  ( A  e.  CC  ->  (
( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P if ( C  e.  X ,  C ,  ( 0vec `  U
) ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) )
216, 11, 20dedth2h 3581 . . 3  |-  ( ( B  e.  X  /\  C  e.  X )  ->  ( A  e.  CC  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) ) )
2221com12 29 . 2  |-  ( A  e.  CC  ->  (
( B  e.  X  /\  C  e.  X
)  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) ) )
23223impib 1154 1  |-  ( ( A  e.  CC  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   ifcif 3539   ` cfv 4673  (class class class)co 5792   CCcc 8703    x. cmul 8710   +vcpv 21102   BaseSetcba 21103   .s
OLDcns 21104   0veccn0v 21105   .i
OLDcdip 21234   CPreHil OLDccphlo 21351
This theorem is referenced by:  dipass  21384  ipblnfi  21395
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-icc 10630  df-fz 10750  df-fzo 10838  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-sum 12125  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-cn 16920  df-cnp 16921  df-t1 17005  df-haus 17006  df-tx 17220  df-hmeo 17409  df-xms 17848  df-ms 17849  df-tms 17850  df-grpo 20819  df-gid 20820  df-ginv 20821  df-gdiv 20822  df-ablo 20910  df-vc 21063  df-nv 21109  df-va 21112  df-ba 21113  df-sm 21114  df-0v 21115  df-vs 21116  df-nmcv 21117  df-ims 21118  df-dip 21235  df-ph 21352
  Copyright terms: Public domain W3C validator