MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Unicode version

Theorem ipidsq 22197
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1  |-  X  =  ( BaseSet `  U )
ipid.6  |-  N  =  ( normCV `  U )
ipid.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
ipidsq  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P A )  =  ( ( N `  A ) ^ 2 ) )

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 eqid 2435 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2435 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 ipid.6 . . . 4  |-  N  =  ( normCV `  U )
5 ipid.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 22191 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  e.  X )  ->  ( A P A )  =  ( ( ( ( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A ( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
763anidm23 1243 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P A )  =  ( ( ( ( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A ( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
81, 2, 3nv2 22101 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) A )  =  ( 2 ( .s OLD `  U
) A ) )
98fveq2d 5723 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) A ) )  =  ( N `  ( 2 ( .s
OLD `  U ) A ) ) )
10 2re 10058 . . . . . . . . . . . 12  |-  2  e.  RR
11 0re 9080 . . . . . . . . . . . . 13  |-  0  e.  RR
12 2pos 10071 . . . . . . . . . . . . 13  |-  0  <  2
1311, 10, 12ltleii 9185 . . . . . . . . . . . 12  |-  0  <_  2
1410, 13pm3.2i 442 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <_  2 )
151, 3, 4nvsge0 22140 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  RR  /\  0  <_  2 )  /\  A  e.  X )  ->  ( N `  (
2 ( .s OLD `  U ) A ) )  =  ( 2  x.  ( N `  A ) ) )
1614, 15mp3an2 1267 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( 2
( .s OLD `  U
) A ) )  =  ( 2  x.  ( N `  A
) ) )
179, 16eqtrd 2467 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) A ) )  =  ( 2  x.  ( N `  A
) ) )
1817oveq1d 6087 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) A ) ) ^ 2 )  =  ( ( 2  x.  ( N `  A ) ) ^
2 ) )
191, 4nvcl 22136 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
2019recnd 9103 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  e.  CC )
21 2cn 10059 . . . . . . . . . . 11  |-  2  e.  CC
22 2nn0 10227 . . . . . . . . . . 11  |-  2  e.  NN0
23 mulexp 11407 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( N `  A )  e.  CC  /\  2  e.  NN0 )  ->  (
( 2  x.  ( N `  A )
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  A ) ^ 2 ) ) )
2421, 22, 23mp3an13 1270 . . . . . . . . . 10  |-  ( ( N `  A )  e.  CC  ->  (
( 2  x.  ( N `  A )
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  A ) ^ 2 ) ) )
2520, 24syl 16 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 2  x.  ( N `  A )
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  A ) ^ 2 ) ) )
26 sq2 11465 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
2726oveq1i 6082 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  x.  ( ( N `
 A ) ^
2 ) )  =  ( 4  x.  (
( N `  A
) ^ 2 ) )
2825, 27syl6eq 2483 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 2  x.  ( N `  A )
) ^ 2 )  =  ( 4  x.  ( ( N `  A ) ^ 2 ) ) )
2918, 28eqtrd 2467 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) A ) ) ^ 2 )  =  ( 4  x.  ( ( N `  A ) ^ 2 ) ) )
30 eqid 2435 . . . . . . . . . . 11  |-  ( 0vec `  U )  =  (
0vec `  U )
311, 2, 3, 30nvrinv 22122 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) )  =  ( 0vec `  U ) )
3231fveq2d 5723 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) A ) ) )  =  ( N `
 ( 0vec `  U
) ) )
3330, 4nvz0 22145 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  ( N `  ( 0vec `  U )
)  =  0 )
3433adantr 452 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( 0vec `  U ) )  =  0 )
3532, 34eqtrd 2467 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) A ) ) )  =  0 )
3635sq0id 11463 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 )  =  0 )
3729, 36oveq12d 6090 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  =  ( ( 4  x.  ( ( N `  A ) ^ 2 ) )  -  0 ) )
38 4cn 10063 . . . . . . . 8  |-  4  e.  CC
3920sqcld 11509 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  A
) ^ 2 )  e.  CC )
40 mulcl 9063 . . . . . . . 8  |-  ( ( 4  e.  CC  /\  ( ( N `  A ) ^ 2 )  e.  CC )  ->  ( 4  x.  ( ( N `  A ) ^ 2 ) )  e.  CC )
4138, 39, 40sylancr 645 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
4  x.  ( ( N `  A ) ^ 2 ) )  e.  CC )
4241subid1d 9389 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  -  0 )  =  ( 4  x.  ( ( N `  A ) ^ 2 ) ) )
4337, 42eqtrd 2467 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  =  ( 4  x.  ( ( N `
 A ) ^
2 ) ) )
44 1re 9079 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
4544renegcli 9351 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  RR
46 absreim 12086 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  -u 1  e.  RR )  ->  ( abs `  (
1  +  ( _i  x.  -u 1 ) ) )  =  ( sqr `  ( ( 1 ^ 2 )  +  (
-u 1 ^ 2 ) ) ) )
4744, 45, 46mp2an 654 . . . . . . . . . . . . . . 15  |-  ( abs `  ( 1  +  ( _i  x.  -u 1
) ) )  =  ( sqr `  (
( 1 ^ 2 )  +  ( -u
1 ^ 2 ) ) )
48 ax-icn 9038 . . . . . . . . . . . . . . . . . . 19  |-  _i  e.  CC
49 ax-1cn 9037 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
5048, 49mulneg2i 9469 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  -u 1 )  = 
-u ( _i  x.  1 )
5148mulid1i 9081 . . . . . . . . . . . . . . . . . . 19  |-  ( _i  x.  1 )  =  _i
5251negeqi 9288 . . . . . . . . . . . . . . . . . 18  |-  -u (
_i  x.  1 )  =  -u _i
5350, 52eqtri 2455 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  -u 1 )  = 
-u _i
5453oveq2i 6083 . . . . . . . . . . . . . . . 16  |-  ( 1  +  ( _i  x.  -u 1 ) )  =  ( 1  +  -u _i )
5554fveq2i 5722 . . . . . . . . . . . . . . 15  |-  ( abs `  ( 1  +  ( _i  x.  -u 1
) ) )  =  ( abs `  (
1  +  -u _i ) )
56 sqneg 11430 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
5749, 56ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
5857oveq2i 6083 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ^ 2 )  +  ( -u 1 ^ 2 ) )  =  ( ( 1 ^ 2 )  +  ( 1 ^ 2 ) )
5958fveq2i 5722 . . . . . . . . . . . . . . 15  |-  ( sqr `  ( ( 1 ^ 2 )  +  (
-u 1 ^ 2 ) ) )  =  ( sqr `  (
( 1 ^ 2 )  +  ( 1 ^ 2 ) ) )
6047, 55, 593eqtr3i 2463 . . . . . . . . . . . . . 14  |-  ( abs `  ( 1  +  -u _i ) )  =  ( sqr `  ( ( 1 ^ 2 )  +  ( 1 ^ 2 ) ) )
61 absreim 12086 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  1  e.  RR )  ->  ( abs `  (
1  +  ( _i  x.  1 ) ) )  =  ( sqr `  ( ( 1 ^ 2 )  +  ( 1 ^ 2 ) ) ) )
6244, 44, 61mp2an 654 . . . . . . . . . . . . . 14  |-  ( abs `  ( 1  +  ( _i  x.  1 ) ) )  =  ( sqr `  ( ( 1 ^ 2 )  +  ( 1 ^ 2 ) ) )
6351oveq2i 6083 . . . . . . . . . . . . . . 15  |-  ( 1  +  ( _i  x.  1 ) )  =  ( 1  +  _i )
6463fveq2i 5722 . . . . . . . . . . . . . 14  |-  ( abs `  ( 1  +  ( _i  x.  1 ) ) )  =  ( abs `  ( 1  +  _i ) )
6560, 62, 643eqtr2i 2461 . . . . . . . . . . . . 13  |-  ( abs `  ( 1  +  -u _i ) )  =  ( abs `  ( 1  +  _i ) )
6665oveq1i 6082 . . . . . . . . . . . 12  |-  ( ( abs `  ( 1  +  -u _i ) )  x.  ( N `  A ) )  =  ( ( abs `  (
1  +  _i ) )  x.  ( N `
 A ) )
6748negcli 9357 . . . . . . . . . . . . . 14  |-  -u _i  e.  CC
6849, 67addcli 9083 . . . . . . . . . . . . 13  |-  ( 1  +  -u _i )  e.  CC
691, 3, 4nvs 22139 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
1  +  -u _i )  e.  CC  /\  A  e.  X )  ->  ( N `  ( (
1  +  -u _i ) ( .s OLD `  U ) A ) )  =  ( ( abs `  ( 1  +  -u _i ) )  x.  ( N `  A ) ) )
7068, 69mp3an2 1267 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( (
1  +  -u _i ) ( .s OLD `  U ) A ) )  =  ( ( abs `  ( 1  +  -u _i ) )  x.  ( N `  A ) ) )
7149, 48addcli 9083 . . . . . . . . . . . . 13  |-  ( 1  +  _i )  e.  CC
721, 3, 4nvs 22139 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
1  +  _i )  e.  CC  /\  A  e.  X )  ->  ( N `  ( (
1  +  _i ) ( .s OLD `  U
) A ) )  =  ( ( abs `  ( 1  +  _i ) )  x.  ( N `  A )
) )
7371, 72mp3an2 1267 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( (
1  +  _i ) ( .s OLD `  U
) A ) )  =  ( ( abs `  ( 1  +  _i ) )  x.  ( N `  A )
) )
7466, 70, 733eqtr4a 2493 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( (
1  +  -u _i ) ( .s OLD `  U ) A ) )  =  ( N `
 ( ( 1  +  _i ) ( .s OLD `  U
) A ) ) )
751, 2, 3nvdir 22100 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
1  e.  CC  /\  -u _i  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  -u _i ) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) )
7649, 75mp3anr1 1276 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( -u _i  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  -u _i ) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) )
7767, 76mpanr1 665 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1  +  -u _i ) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) )
781, 3nvsid 22096 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 ( .s OLD `  U ) A )  =  A )
7978oveq1d 6087 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1 ( .s
OLD `  U ) A ) ( +v
`  U ) (
-u _i ( .s
OLD `  U ) A ) )  =  ( A ( +v
`  U ) (
-u _i ( .s
OLD `  U ) A ) ) )
8077, 79eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1  +  -u _i ) ( .s OLD `  U ) A )  =  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) )
8180fveq2d 5723 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( (
1  +  -u _i ) ( .s OLD `  U ) A ) )  =  ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) )
821, 2, 3nvdir 22100 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
1  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( 1  +  _i ) ( .s
OLD `  U ) A )  =  ( ( 1 ( .s
OLD `  U ) A ) ( +v
`  U ) ( _i ( .s OLD `  U ) A ) ) )
8349, 82mp3anr1 1276 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  (
_i  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  _i ) ( .s OLD `  U
) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) )
8448, 83mpanr1 665 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1  +  _i ) ( .s OLD `  U ) A )  =  ( ( 1 ( .s OLD `  U
) A ) ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) )
8578oveq1d 6087 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1 ( .s
OLD `  U ) A ) ( +v
`  U ) ( _i ( .s OLD `  U ) A ) )  =  ( A ( +v `  U
) ( _i ( .s OLD `  U
) A ) ) )
8684, 85eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 1  +  _i ) ( .s OLD `  U ) A )  =  ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) )
8786fveq2d 5723 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( (
1  +  _i ) ( .s OLD `  U
) A ) )  =  ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) )
8874, 81, 873eqtr3d 2475 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) A ) ) )  =  ( N `
 ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) ) )
8988oveq1d 6087 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 )  =  ( ( N `
 ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) ) ^ 2 ) )
9089oveq2d 6088 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )  =  ( ( ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) ) ^ 2 ) ) )
911, 2, 3, 4, 5ipval2lem4 22190 . . . . . . . . . . 11  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  e.  X )  /\  _i  e.  CC )  ->  ( ( N `
 ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) ) ^ 2 )  e.  CC )
9248, 91mpan2 653 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  e.  CC )
93923anidm23 1243 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  e.  CC )
9493subidd 9388 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( _i ( .s
OLD `  U ) A ) ) ) ^ 2 ) )  =  0 )
9590, 94eqtrd 2467 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )  =  0 )
9695oveq2d 6088 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
_i  x.  ( (
( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )  =  ( _i  x.  0 ) )
9748mul01i 9245 . . . . . 6  |-  ( _i  x.  0 )  =  0
9896, 97syl6eq 2483 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
_i  x.  ( (
( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )  =  0 )
9943, 98oveq12d 6090 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( ( N `
 ( A ( +v `  U ) A ) ) ^
2 )  -  (
( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  =  ( ( 4  x.  ( ( N `  A ) ^ 2 ) )  +  0 ) )
10041addid1d 9255 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  +  0 )  =  ( 4  x.  ( ( N `  A ) ^ 2 ) ) )
10199, 100eqtr2d 2468 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
4  x.  ( ( N `  A ) ^ 2 ) )  =  ( ( ( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A ( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
102101oveq1d 6087 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  /  4 )  =  ( ( ( ( ( N `  ( A ( +v `  U ) A ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u 1 ( .s OLD `  U
) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A ( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( N `
 ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
103 4re 10062 . . . . 5  |-  4  e.  RR
104 4pos 10075 . . . . 5  |-  0  <  4
105103, 104gt0ne0ii 9552 . . . 4  |-  4  =/=  0
106 divcan3 9691 . . . 4  |-  ( ( ( ( N `  A ) ^ 2 )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  /  4 )  =  ( ( N `
 A ) ^
2 ) )
10738, 105, 106mp3an23 1271 . . 3  |-  ( ( ( N `  A
) ^ 2 )  e.  CC  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  /  4 )  =  ( ( N `
 A ) ^
2 ) )
10839, 107syl 16 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( 4  x.  (
( N `  A
) ^ 2 ) )  /  4 )  =  ( ( N `
 A ) ^
2 ) )
1097, 102, 1083eqtr2d 2473 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P A )  =  ( ( N `  A ) ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980   _ici 8981    + caddc 8982    x. cmul 8984    <_ cle 9110    - cmin 9280   -ucneg 9281    / cdiv 9666   2c2 10038   4c4 10040   NN0cn0 10210   ^cexp 11370   sqrcsqr 12026   abscabs 12027   NrmCVeccnv 22051   +vcpv 22052   BaseSetcba 22053   .s
OLDcns 22054   0veccn0v 22055   normCVcnmcv 22057   .i OLDcdip 22184
This theorem is referenced by:  ipnm  22198  ipz  22206  pythi  22339  siilem1  22340  hlipgt0  22404  htthlem  22408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-grpo 21767  df-gid 21768  df-ginv 21769  df-ablo 21858  df-vc 22013  df-nv 22059  df-va 22062  df-ba 22063  df-sm 22064  df-0v 22065  df-nmcv 22067  df-dip 22185
  Copyright terms: Public domain W3C validator