MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval Unicode version

Theorem ipval 21269
Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is  G, the scalar product is  S, the norm is  N, and the set of vectors is  X. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .s OLD `  U
)
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
ipval  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 ) )
Distinct variable groups:    k, G    k, N    S, k    U, k    A, k    B, k    k, X
Dummy variables  x  y are mutually distinct and distinct from all other variables.
Allowed substitution hint:    P( k)

Proof of Theorem ipval
StepHypRef Expression
1 dipfval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 dipfval.2 . . . . 5  |-  G  =  ( +v `  U
)
3 dipfval.4 . . . . 5  |-  S  =  ( .s OLD `  U
)
4 dipfval.6 . . . . 5  |-  N  =  ( normCV `  U )
5 dipfval.7 . . . . 5  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5dipfval 21268 . . . 4  |-  ( U  e.  NrmCVec  ->  P  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
76oveqd 5837 . . 3  |-  ( U  e.  NrmCVec  ->  ( A P B )  =  ( A ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( N `  ( x G ( ( _i ^ k
) S y ) ) ) ^ 2 ) )  /  4
) ) B ) )
8 oveq1 5827 . . . . . . . . 9  |-  ( x  =  A  ->  (
x G ( ( _i ^ k ) S y ) )  =  ( A G ( ( _i ^
k ) S y ) ) )
98fveq2d 5490 . . . . . . . 8  |-  ( x  =  A  ->  ( N `  ( x G ( ( _i
^ k ) S y ) ) )  =  ( N `  ( A G ( ( _i ^ k ) S y ) ) ) )
109oveq1d 5835 . . . . . . 7  |-  ( x  =  A  ->  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 )  =  ( ( N `
 ( A G ( ( _i ^
k ) S y ) ) ) ^
2 ) )
1110oveq2d 5836 . . . . . 6  |-  ( x  =  A  ->  (
( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  =  ( ( _i
^ k )  x.  ( ( N `  ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) )
1211sumeq2sdv 12172 . . . . 5  |-  ( x  =  A  ->  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( N `  ( x G ( ( _i ^ k
) S y ) ) ) ^ 2 ) )  =  sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( A G ( ( _i
^ k ) S y ) ) ) ^ 2 ) ) )
1312oveq1d 5835 . . . 4  |-  ( x  =  A  ->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 )  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )
14 oveq2 5828 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( _i ^ k
) S y )  =  ( ( _i
^ k ) S B ) )
1514oveq2d 5836 . . . . . . . . 9  |-  ( y  =  B  ->  ( A G ( ( _i
^ k ) S y ) )  =  ( A G ( ( _i ^ k
) S B ) ) )
1615fveq2d 5490 . . . . . . . 8  |-  ( y  =  B  ->  ( N `  ( A G ( ( _i
^ k ) S y ) ) )  =  ( N `  ( A G ( ( _i ^ k ) S B ) ) ) )
1716oveq1d 5835 . . . . . . 7  |-  ( y  =  B  ->  (
( N `  ( A G ( ( _i
^ k ) S y ) ) ) ^ 2 )  =  ( ( N `  ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) )
1817oveq2d 5836 . . . . . 6  |-  ( y  =  B  ->  (
( _i ^ k
)  x.  ( ( N `  ( A G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  =  ( ( _i
^ k )  x.  ( ( N `  ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) )
1918sumeq2sdv 12172 . . . . 5  |-  ( y  =  B  ->  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( N `  ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  =  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( N `  ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) )
2019oveq1d 5835 . . . 4  |-  ( y  =  B  ->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( A G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 )  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 ) )
21 eqid 2285 . . . 4  |-  ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )  =  ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( N `  ( x G ( ( _i ^ k
) S y ) ) ) ^ 2 ) )  /  4
) )
22 ovex 5845 . . . 4  |-  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 )  e. 
_V
2313, 20, 21, 22ovmpt2 5945 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) B )  =  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 ) )
247, 23sylan9eq 2337 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A P B )  =  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 ) )
25243impb 1149 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  ( A G ( ( _i
^ k ) S B ) ) ) ^ 2 ) )  /  4 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   ` cfv 5222  (class class class)co 5820    e. cmpt2 5822   1c1 8734   _ici 8735    x. cmul 8738    / cdiv 9419   2c2 9791   4c4 9793   ...cfz 10777   ^cexp 11099   sum_csu 12153   NrmCVeccnv 21133   +vcpv 21134   BaseSetcba 21135   .s OLDcns 21136   normCVcnmcv 21139   .i OLDcdip 21266
This theorem is referenced by:  ipval2  21273  dipcl  21281  ipf  21282  sspival  21307
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10778  df-seq 11042  df-sum 12154  df-dip 21267
  Copyright terms: Public domain W3C validator