MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipz Unicode version

Theorem ipz 22206
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
dip0r.1  |-  X  =  ( BaseSet `  U )
dip0r.5  |-  Z  =  ( 0vec `  U
)
dip0r.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
ipz  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( A P A )  =  0  <->  A  =  Z ) )

Proof of Theorem ipz
StepHypRef Expression
1 dip0r.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 eqid 2435 . . . 4  |-  ( normCV `  U )  =  (
normCV
`  U )
3 dip0r.7 . . . 4  |-  P  =  ( .i OLD `  U
)
41, 2, 3ipidsq 22197 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P A )  =  ( ( ( normCV `  U ) `  A
) ^ 2 ) )
54eqeq1d 2443 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( A P A )  =  0  <->  (
( ( normCV `  U
) `  A ) ^ 2 )  =  0 ) )
61, 2nvcl 22136 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( normCV `  U ) `  A )  e.  RR )
76recnd 9103 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( normCV `  U ) `  A )  e.  CC )
8 sqeq0 11434 . . 3  |-  ( ( ( normCV `  U ) `  A )  e.  CC  ->  ( ( ( (
normCV
`  U ) `  A ) ^ 2 )  =  0  <->  (
( normCV `  U ) `  A )  =  0 ) )
97, 8syl 16 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( ( normCV `  U ) `  A
) ^ 2 )  =  0  <->  ( ( normCV `  U ) `  A
)  =  0 ) )
10 dip0r.5 . . 3  |-  Z  =  ( 0vec `  U
)
111, 10, 2nvz 22146 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( ( normCV `  U
) `  A )  =  0  <->  A  =  Z ) )
125, 9, 113bitrd 271 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( A P A )  =  0  <->  A  =  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072   CCcc 8977   0cc0 8979   2c2 10038   ^cexp 11370   NrmCVeccnv 22051   BaseSetcba 22053   0veccn0v 22055   normCVcnmcv 22057   .i OLDcdip 22184
This theorem is referenced by:  ip2eqi  22346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-grpo 21767  df-gid 21768  df-ginv 21769  df-ablo 21858  df-vc 22013  df-nv 22059  df-va 22062  df-ba 22063  df-sm 22064  df-0v 22065  df-nmcv 22067  df-dip 22185
  Copyright terms: Public domain W3C validator