Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapx1 Unicode version

Theorem irrapx1 26785
Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
irrapx1  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ~~  NN )
Distinct variable group:    y, A

Proof of Theorem irrapx1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qnnen 12772 . . . 4  |-  QQ  ~~  NN
2 nnenom 11278 . . . 4  |-  NN  ~~  om
31, 2entri 7124 . . 3  |-  QQ  ~~  om
43, 2pm3.2i 442 . 2  |-  ( QQ 
~~  om  /\  NN  ~~  om )
5 ssrab2 3392 . . . . . 6  |-  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  QQ
6 qssre 10544 . . . . . 6  |-  QQ  C_  RR
75, 6sstri 3321 . . . . 5  |-  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  RR
87a1i 11 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  RR )
9 eldifi 3433 . . . . 5  |-  ( A  e.  ( RR+  \  QQ )  ->  A  e.  RR+ )
109rpred 10608 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  A  e.  RR )
11 eldifn 3434 . . . . 5  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  A  e.  QQ )
12 elrabi 3054 . . . . 5  |-  ( A  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ->  A  e.  QQ )
1311, 12nsyl 115 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  A  e.  { y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) } )
14 irrapxlem6 26784 . . . . . 6  |-  ( ( A  e.  RR+  /\  a  e.  RR+ )  ->  E. b  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
b  -  A ) )  <  a )
159, 14sylan 458 . . . . 5  |-  ( ( A  e.  ( RR+  \  QQ )  /\  a  e.  RR+ )  ->  E. b  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
b  -  A ) )  <  a )
1615ralrimiva 2753 . . . 4  |-  ( A  e.  ( RR+  \  QQ )  ->  A. a  e.  RR+  E. b  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( b  -  A ) )  < 
a )
17 rencldnfi 26776 . . . 4  |-  ( ( ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  RR  /\  A  e.  RR  /\ 
-.  A  e.  {
y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) } )  /\  A. a  e.  RR+  E. b  e.  {
y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( b  -  A ) )  < 
a )  ->  -.  { y  e.  QQ  | 
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin )
188, 10, 13, 16, 17syl31anc 1187 . . 3  |-  ( A  e.  ( RR+  \  QQ )  ->  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  e.  Fin )
1918, 5jctil 524 . 2  |-  ( A  e.  ( RR+  \  QQ )  ->  ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  C_  QQ  /\  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin ) )
20 ctbnfien 26773 . 2  |-  ( ( ( QQ  ~~  om  /\  NN  ~~  om )  /\  ( { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  C_  QQ  /\  -.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  e.  Fin ) )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ~~  NN )
214, 19, 20sylancr 645 1  |-  ( A  e.  ( RR+  \  QQ )  ->  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    e. wcel 1721   A.wral 2670   E.wrex 2671   {crab 2674    \ cdif 3281    C_ wss 3284   class class class wbr 4176   omcom 4808   ` cfv 5417  (class class class)co 6044    ~~ cen 7069   Fincfn 7072   RRcr 8949   0cc0 8950    < clt 9080    - cmin 9251   -ucneg 9252   NNcn 9960   2c2 10009   QQcq 10534   RR+crp 10572   ^cexp 11341   abscabs 11998  denomcdenom 13085
This theorem is referenced by:  pellexlem4  26789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-omul 6692  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-acn 7789  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-q 10535  df-rp 10573  df-ico 10882  df-fz 11004  df-fl 11161  df-mod 11210  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-dvds 12812  df-gcd 12966  df-numer 13086  df-denom 13087
  Copyright terms: Public domain W3C validator