MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Unicode version

Theorem irredrmul 15800
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i  |-  I  =  (Irred `  R )
irredrmul.u  |-  U  =  (Unit `  R )
irredrmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
irredrmul  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )

Proof of Theorem irredrmul
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  I )
2 simp1 957 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  R  e.  Ring )
3 simp3 959 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  U )
4 irredrmul.u . . . . . . . . 9  |-  U  =  (Unit `  R )
5 eqid 2435 . . . . . . . . 9  |-  (/r `  R
)  =  (/r `  R
)
64, 5unitdvcl 15780 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y )  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
763com23 1159 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  ( X  .x.  Y )  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
873expia 1155 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
92, 3, 8syl2anc 643 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
10 irredn0.i . . . . . . . . 9  |-  I  =  (Irred `  R )
11 eqid 2435 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
1210, 11irredcl 15797 . . . . . . . 8  |-  ( X  e.  I  ->  X  e.  ( Base `  R
) )
13123ad2ant2 979 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
14 irredrmul.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
1511, 4, 5, 14dvrcan3 15785 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
162, 13, 3, 15syl3anc 1184 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
1716eleq1d 2501 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U  <->  X  e.  U
) )
189, 17sylibd 206 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
192ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  R  e.  Ring )
20 eldifi 3461 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  y  e.  ( Base `  R )
)
2120ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  y  e.  ( Base `  R )
)
223ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  Y  e.  U )
2311, 4, 5dvrcl 15779 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
y (/r `  R ) Y )  e.  ( Base `  R ) )
2419, 21, 22, 23syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( Base `  R ) )
25 eldifn 3462 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  -.  y  e.  U )
2625ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  y  e.  U )
274, 14unitmulcl 15757 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
y (/r `  R ) Y )  e.  U  /\  Y  e.  U )  ->  ( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U )
28273com23 1159 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  (
y (/r `  R ) Y )  e.  U )  ->  ( ( y (/r `  R ) Y )  .x.  Y )  e.  U )
29283expia 1155 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  e.  U  ->  ( (
y (/r `  R ) Y )  .x.  Y )  e.  U ) )
3019, 22, 29syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U ) )
3111, 4, 5, 14dvrcan1 15784 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  .x.  Y )  =  y )
3219, 21, 22, 31syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  .x.  Y )  =  y )
3332eleq1d 2501 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
( y (/r `  R
) Y )  .x.  Y )  e.  U  <->  y  e.  U ) )
3430, 33sylibd 206 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
y  e.  U ) )
3526, 34mtod 170 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  (
y (/r `  R ) Y )  e.  U )
3624, 35eldifd 3323 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( (
Base `  R )  \  U ) )
37 simprr 734 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  y )  =  ( X  .x.  Y ) )
3837oveq1d 6087 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( ( X  .x.  Y ) (/r `  R ) Y ) )
39 eldifi 3461 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  R )  \  U
)  ->  x  e.  ( Base `  R )
)
4039ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  x  e.  ( Base `  R )
)
4111, 4, 5, 14dvrass 15783 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  Y  e.  U ) )  -> 
( ( x  .x.  y ) (/r `  R
) Y )  =  ( x  .x.  (
y (/r `  R ) Y ) ) )
4219, 40, 21, 22, 41syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( x 
.x.  ( y (/r `  R ) Y ) ) )
4316ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( ( X  .x.  Y ) (/r `  R ) Y )  =  X )
4438, 42, 433eqtr3d 2475 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X )
45 oveq2 6080 . . . . . . . . 9  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( x  .x.  z )  =  ( x  .x.  ( y (/r `  R ) Y ) ) )
4645eqeq1d 2443 . . . . . . . 8  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( ( x 
.x.  z )  =  X  <->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X ) )
4746rspcev 3044 . . . . . . 7  |-  ( ( ( y (/r `  R
) Y )  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  (
y (/r `  R ) Y ) )  =  X )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4836, 44, 47syl2anc 643 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4948rexlimdvaa 2823 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  /\  x  e.  (
( Base `  R )  \  U ) )  -> 
( E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) )
5049reximdva 2810 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( E. x  e.  (
( Base `  R )  \  U ) E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. x  e.  (
( Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) )
5118, 50orim12d 812 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) )  ->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
5211, 4unitcl 15752 . . . . . 6  |-  ( Y  e.  U  ->  Y  e.  ( Base `  R
) )
53523ad2ant3 980 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
5411, 14rngcl 15665 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  ( Base `  R )
)  ->  ( X  .x.  Y )  e.  (
Base `  R )
)
552, 13, 53, 54syl3anc 1184 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  ( Base `  R
) )
56 eqid 2435 . . . . 5  |-  ( (
Base `  R )  \  U )  =  ( ( Base `  R
)  \  U )
5711, 4, 10, 56, 14isnirred 15793 . . . 4  |-  ( ( X  .x.  Y )  e.  ( Base `  R
)  ->  ( -.  ( X  .x.  Y )  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5855, 57syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5911, 4, 10, 56, 14isnirred 15793 . . . 4  |-  ( X  e.  ( Base `  R
)  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) ) )
6013, 59syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
6151, 58, 603imtr4d 260 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  ->  -.  X  e.  I
) )
621, 61mt4d 132 1  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698    \ cdif 3309   ` cfv 5445  (class class class)co 6072   Basecbs 13457   .rcmulr 13518   Ringcrg 15648  Unitcui 15732  Irredcir 15733  /rcdvr 15775
This theorem is referenced by:  irredlmul  15801  irredneg  15803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-3 10048  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-0g 13715  df-mnd 14678  df-grp 14800  df-minusg 14801  df-mgp 15637  df-rng 15651  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-irred 15736  df-invr 15765  df-dvr 15776
  Copyright terms: Public domain W3C validator