MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Unicode version

Theorem isacs 13547
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Distinct variable groups:    C, f,
s    f, X, s
Dummy variables  c  x are mutually distinct and distinct from all other variables.

Proof of Theorem isacs
StepHypRef Expression
1 elfvex 5516 . 2  |-  ( C  e.  (ACS `  X
)  ->  X  e.  _V )
2 elfvex 5516 . . 3  |-  ( C  e.  (Moore `  X
)  ->  X  e.  _V )
32adantr 453 . 2  |-  ( ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) )  ->  X  e.  _V )
4 fveq2 5485 . . . . . 6  |-  ( x  =  X  ->  (Moore `  x )  =  (Moore `  X ) )
5 pweq 3629 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
65, 5feq23d 5351 . . . . . . . 8  |-  ( x  =  X  ->  (
f : ~P x --> ~P x  <->  f : ~P X
--> ~P X ) )
75raleqdv 2743 . . . . . . . 8  |-  ( x  =  X  ->  ( A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  c  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
86, 7anbi12d 693 . . . . . . 7  |-  ( x  =  X  ->  (
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
98exbidv 1613 . . . . . 6  |-  ( x  =  X  ->  ( E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
104, 9rabeqbidv 2784 . . . . 5  |-  ( x  =  X  ->  { c  e.  (Moore `  x
)  |  E. f
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
11 df-acs 13485 . . . . 5  |- ACS  =  ( x  e.  _V  |->  { c  e.  (Moore `  x )  |  E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
12 fvex 5499 . . . . . 6  |-  (Moore `  X )  e.  _V
1312rabex 4166 . . . . 5  |-  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  e.  _V
1410, 11, 13fvmpt 5563 . . . 4  |-  ( X  e.  _V  ->  (ACS `  X )  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
1514eleq2d 2351 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  C  e.  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) } ) )
16 eleq2 2345 . . . . . . . 8  |-  ( c  =  C  ->  (
s  e.  c  <->  s  e.  C ) )
1716bibi1d 312 . . . . . . 7  |-  ( c  =  C  ->  (
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )  <->  ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1817ralbidv 2564 . . . . . 6  |-  ( c  =  C  ->  ( A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1918anbi2d 686 . . . . 5  |-  ( c  =  C  ->  (
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2019exbidv 1613 . . . 4  |-  ( c  =  C  ->  ( E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  C  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
2120elrab 2924 . . 3  |-  ( C  e.  { c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) }  <-> 
( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2215, 21syl6bb 254 . 2  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) ) )
231, 3, 22pm5.21nii 344 1  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1529    = wceq 1624    e. wcel 1685   A.wral 2544   {crab 2548   _Vcvv 2789    i^i cin 3152    C_ wss 3153   ~Pcpw 3626   U.cuni 3828   "cima 4691   -->wf 5217   ` cfv 5221   Fincfn 6858  Moorecmre 13478  ACScacs 13481
This theorem is referenced by:  acsmre  13548  isacs2  13549  isacs1i  13553  mreacs  13554
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-acs 13485
  Copyright terms: Public domain W3C validator