MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasisg Unicode version

Theorem isbasisg 16902
Description: Express the predicate " B is a basis for a topology." (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasisg  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
Distinct variable group:    x, y, B
Allowed substitution hints:    C( x, y)

Proof of Theorem isbasisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ineq1 3451 . . . . . 6  |-  ( z  =  B  ->  (
z  i^i  ~P (
x  i^i  y )
)  =  ( B  i^i  ~P ( x  i^i  y ) ) )
21unieqd 3940 . . . . 5  |-  ( z  =  B  ->  U. (
z  i^i  ~P (
x  i^i  y )
)  =  U. ( B  i^i  ~P ( x  i^i  y ) ) )
32sseq2d 3292 . . . 4  |-  ( z  =  B  ->  (
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
43raleqbi1dv 2829 . . 3  |-  ( z  =  B  ->  ( A. y  e.  z 
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
54raleqbi1dv 2829 . 2  |-  ( z  =  B  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  C_  U. (
z  i^i  ~P (
x  i^i  y )
)  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
6 df-bases 16855 . 2  |-  TopBases  =  {
z  |  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  C_  U. (
z  i^i  ~P (
x  i^i  y )
) }
75, 6elab2g 3001 1  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1647    e. wcel 1715   A.wral 2628    i^i cin 3237    C_ wss 3238   ~Pcpw 3714   U.cuni 3929   TopBasesctb 16852
This theorem is referenced by:  isbasis2g  16903  basis1  16905  basdif0  16908  baspartn  16909  basqtop  17619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ral 2633  df-rex 2634  df-v 2875  df-in 3245  df-ss 3252  df-uni 3930  df-bases 16855
  Copyright terms: Public domain W3C validator