MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Unicode version

Theorem isblo3i 21372
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1  |-  X  =  ( BaseSet `  U )
isblo3i.m  |-  M  =  ( normCV `  U )
isblo3i.n  |-  N  =  ( normCV `  W )
isblo3i.4  |-  L  =  ( U  LnOp  W
)
isblo3i.5  |-  B  =  ( U  BLnOp  W )
isblo3i.u  |-  U  e.  NrmCVec
isblo3i.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
isblo3i  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Distinct variable groups:    x, y, B    x, L    x, M, y    x, N, y    x, T, y    x, U, y   
x, W, y    x, X, y
Allowed substitution hint:    L( y)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4  |-  U  e.  NrmCVec
2 isblo3i.w . . . 4  |-  W  e.  NrmCVec
3 isblo3i.4 . . . . 5  |-  L  =  ( U  LnOp  W
)
4 isblo3i.5 . . . . 5  |-  B  =  ( U  BLnOp  W )
53, 4bloln 21355 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  L )
61, 2, 5mp3an12 1269 . . 3  |-  ( T  e.  B  ->  T  e.  L )
7 isblo3i.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
8 eqid 2285 . . . . . 6  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
9 eqid 2285 . . . . . 6  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
107, 8, 9, 4nmblore 21357 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOp OLD W
) `  T )  e.  RR )
111, 2, 10mp3an12 1269 . . . 4  |-  ( T  e.  B  ->  (
( U normOp OLD W
) `  T )  e.  RR )
12 isblo3i.m . . . . . 6  |-  M  =  ( normCV `  U )
13 isblo3i.n . . . . . 6  |-  N  =  ( normCV `  W )
147, 12, 13, 9, 4, 1, 2nmblolbi 21371 . . . . 5  |-  ( ( T  e.  B  /\  y  e.  X )  ->  ( N `  ( T `  y )
)  <_  ( (
( U normOp OLD W
) `  T )  x.  ( M `  y
) ) )
1514ralrimiva 2628 . . . 4  |-  ( T  e.  B  ->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) )
16 oveq1 5827 . . . . . . 7  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  (
x  x.  ( M `
 y ) )  =  ( ( ( U normOp OLD W ) `  T )  x.  ( M `  y )
) )
1716breq2d 4037 . . . . . 6  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( M `  y
) )  <->  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1817ralbidv 2565 . . . . 5  |-  ( x  =  ( ( U
normOp OLD W ) `  T )  ->  ( A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  <->  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( M `
 y ) ) ) )
1918rspcev 2886 . . . 4  |-  ( ( ( ( U normOp OLD W ) `  T
)  e.  RR  /\  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( ( ( U normOp OLD W ) `  T )  x.  ( M `  y )
) )  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
2011, 15, 19syl2anc 644 . . 3  |-  ( T  e.  B  ->  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) )
216, 20jca 520 . 2  |-  ( T  e.  B  ->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) ) )
22 simp1 957 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  L )
237, 8, 3lnof 21326 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
241, 2, 23mp3an12 1269 . . . . . 6  |-  ( T  e.  L  ->  T : X --> ( BaseSet `  W
) )
257, 8, 9nmoxr 21337 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> ( BaseSet `  W )
)  ->  ( ( U normOp OLD W ) `  T )  e.  RR* )
261, 2, 25mp3an12 1269 . . . . . . . 8  |-  ( T : X --> ( BaseSet `  W )  ->  (
( U normOp OLD W
) `  T )  e.  RR* )
27263ad2ant1 978 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  e.  RR* )
28 recn 8823 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
2928abscld 11913 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
3029rexrd 8877 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  e. 
RR* )
31303ad2ant2 979 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  e.  RR* )
32 pnfxr 10451 . . . . . . . 8  |-  +oo  e.  RR*
3332a1i 12 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  +oo  e.  RR* )
347, 8, 12, 13, 9, 1, 2nmoub3i 21344 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  <_  ( abs `  x ) )
35 ltpnf 10459 . . . . . . . . 9  |-  ( ( abs `  x )  e.  RR  ->  ( abs `  x )  <  +oo )
3629, 35syl 17 . . . . . . . 8  |-  ( x  e.  RR  ->  ( abs `  x )  <  +oo )
37363ad2ant2 979 . . . . . . 7  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( abs `  x )  <  +oo )
3827, 31, 33, 34, 37xrlelttrd 10487 . . . . . 6  |-  ( ( T : X --> ( BaseSet `  W )  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y
) )  <_  (
x  x.  ( M `
 y ) ) )  ->  ( ( U normOp OLD W ) `  T )  <  +oo )
3924, 38syl3an1 1217 . . . . 5  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  (
( U normOp OLD W
) `  T )  <  +oo )
409, 3, 4isblo 21353 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) ) )
411, 2, 40mp2an 655 . . . . 5  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD W
) `  T )  <  +oo ) )
4222, 39, 41sylanbrc 647 . . . 4  |-  ( ( T  e.  L  /\  x  e.  RR  /\  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4342rexlimdv3a 2671 . . 3  |-  ( T  e.  L  ->  ( E. x  e.  RR  A. y  e.  X  ( N `  ( T `
 y ) )  <_  ( x  x.  ( M `  y
) )  ->  T  e.  B ) )
4443imp 420 . 2  |-  ( ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_ 
( x  x.  ( M `  y )
) )  ->  T  e.  B )
4521, 44impbii 182 1  |-  ( T  e.  B  <->  ( T  e.  L  /\  E. x  e.  RR  A. y  e.  X  ( N `  ( T `  y ) )  <_  ( x  x.  ( M `  y
) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545   E.wrex 2546   class class class wbr 4025   -->wf 5218   ` cfv 5222  (class class class)co 5820   RRcr 8732    x. cmul 8738    +oocpnf 8860   RR*cxr 8862    < clt 8863    <_ cle 8864   abscabs 11714   NrmCVeccnv 21133   BaseSetcba 21135   normCVcnmcv 21139    LnOp clno 21311   normOp OLDcnmoo 21312    BLnOp cblo 21313
This theorem is referenced by:  blo3i  21373  blocnilem  21375
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-grpo 20851  df-gid 20852  df-ginv 20853  df-ablo 20942  df-vc 21095  df-nv 21141  df-va 21144  df-ba 21145  df-sm 21146  df-0v 21147  df-nmcv 21149  df-lno 21315  df-nmoo 21316  df-blo 21317  df-0o 21318
  Copyright terms: Public domain W3C validator