MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard2 Unicode version

Theorem iscard2 7577
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard2  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  On  ( A  ~~  x  ->  A  C_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem iscard2
StepHypRef Expression
1 cardon 7545 . . 3  |-  ( card `  A )  e.  On
2 eleq1 2318 . . 3  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 204 . 2  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 cardonle 7558 . . . . . 6  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
54biantrurd 496 . . . . 5  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) ) )
6 eqss 3169 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
75, 6syl6rbbr 257 . . . 4  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A  C_  ( card `  A ) ) )
8 oncardval 7556 . . . . 5  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { y  e.  On  |  y  ~~  A }
)
98sseq2d 3181 . . . 4  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  A  C_  |^| { y  e.  On  |  y 
~~  A } ) )
107, 9bitrd 246 . . 3  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A  C_  |^| { y  e.  On  |  y 
~~  A } ) )
11 ssint 3852 . . . 4  |-  ( A 
C_  |^| { y  e.  On  |  y  ~~  A }  <->  A. x  e.  {
y  e.  On  | 
y  ~~  A } A  C_  x )
12 breq1 4000 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  ~~  A  <->  x  ~~  A ) )
1312elrab 2898 . . . . . . . 8  |-  ( x  e.  { y  e.  On  |  y  ~~  A }  <->  ( x  e.  On  /\  x  ~~  A ) )
14 ensymb 6877 . . . . . . . . 9  |-  ( x 
~~  A  <->  A  ~~  x )
1514anbi2i 678 . . . . . . . 8  |-  ( ( x  e.  On  /\  x  ~~  A )  <->  ( x  e.  On  /\  A  ~~  x ) )
1613, 15bitri 242 . . . . . . 7  |-  ( x  e.  { y  e.  On  |  y  ~~  A }  <->  ( x  e.  On  /\  A  ~~  x ) )
1716imbi1i 317 . . . . . 6  |-  ( ( x  e.  { y  e.  On  |  y 
~~  A }  ->  A 
C_  x )  <->  ( (
x  e.  On  /\  A  ~~  x )  ->  A  C_  x ) )
18 impexp 435 . . . . . 6  |-  ( ( ( x  e.  On  /\  A  ~~  x )  ->  A  C_  x
)  <->  ( x  e.  On  ->  ( A  ~~  x  ->  A  C_  x ) ) )
1917, 18bitri 242 . . . . 5  |-  ( ( x  e.  { y  e.  On  |  y 
~~  A }  ->  A 
C_  x )  <->  ( x  e.  On  ->  ( A  ~~  x  ->  A  C_  x ) ) )
2019ralbii2 2546 . . . 4  |-  ( A. x  e.  { y  e.  On  |  y  ~~  A } A  C_  x  <->  A. x  e.  On  ( A  ~~  x  ->  A  C_  x ) )
2111, 20bitri 242 . . 3  |-  ( A 
C_  |^| { y  e.  On  |  y  ~~  A }  <->  A. x  e.  On  ( A  ~~  x  ->  A  C_  x ) )
2210, 21syl6bb 254 . 2  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A. x  e.  On  ( A  ~~  x  ->  A  C_  x ) ) )
233, 22biadan2 626 1  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  On  ( A  ~~  x  ->  A  C_  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   {crab 2522    C_ wss 3127   |^|cint 3836   class class class wbr 3997   Oncon0 4364   ` cfv 4673    ~~ cen 6828   cardccrd 7536
This theorem is referenced by:  harcard  7579
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-er 6628  df-en 6832  df-card 7540
  Copyright terms: Public domain W3C validator