MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau Unicode version

Theorem iscau 18534
Description: Express the property " F is a Cauchy sequence of metric  D." Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 16791. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D ) x ) ) ) )
Distinct variable groups:    x, k, D    k, F, x    k, X, x

Proof of Theorem iscau
StepHypRef Expression
1 caufval 18533 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) x ) } )
21eleq2d 2320 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  { f  e.  ( X 
^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) } ) )
3 reseq1 4856 . . . . . . 7  |-  ( f  =  F  ->  (
f  |`  ( ZZ>= `  k
) )  =  ( F  |`  ( ZZ>= `  k ) ) )
43feq1d 5236 . . . . . 6  |-  ( f  =  F  ->  (
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) ) )
5 eqidd 2254 . . . . . . 7  |-  ( f  =  F  ->  ( ZZ>=
`  k )  =  ( ZZ>= `  k )
)
6 fveq1 5376 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
76oveq1d 5725 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  k
) ( ball `  D
) x )  =  ( ( F `  k ) ( ball `  D ) x ) )
85, 7feq23d 5243 . . . . . 6  |-  ( f  =  F  ->  (
( F  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
94, 8bitrd 246 . . . . 5  |-  ( f  =  F  ->  (
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
109rexbidv 2528 . . . 4  |-  ( f  =  F  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
1110ralbidv 2527 . . 3  |-  ( f  =  F  ->  ( A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x )  <->  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
1211elrab 2860 . 2  |-  ( F  e.  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) }  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( F `  k
) ( ball `  D
) x ) ) )
132, 12syl6bb 254 1  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D ) x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   {crab 2512    |` cres 4582   -->wf 4588   ` cfv 4592  (class class class)co 5710    ^pm cpm 6659   CCcc 8615   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   * Metcxmt 16201   ballcbl 16203   Caucca 18511
This theorem is referenced by:  iscau2  18535  caufpm  18540  lmcau  18570
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-map 6660  df-xr 8751  df-xmet 16205  df-cau 18514
  Copyright terms: Public domain W3C validator