HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Unicode version

Theorem isch2 21728
Description: Closed subspace  H of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
Distinct variable group:    x, f, H

Proof of Theorem isch2
StepHypRef Expression
1 isch 21727 . 2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  (  ~~>v  "
( H  ^m  NN ) )  C_  H
) )
2 alcom 1568 . . . . 5  |-  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
3 19.23v 2022 . . . . . . . 8  |-  ( A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
4 vex 2743 . . . . . . . . . 10  |-  x  e. 
_V
54elima2 4971 . . . . . . . . 9  |-  ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  <->  E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x ) )
65imbi1i 317 . . . . . . . 8  |-  ( ( x  e.  (  ~~>v  "
( H  ^m  NN ) )  ->  x  e.  H )  <->  ( E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
73, 6bitr4i 245 . . . . . . 7  |-  ( A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H
) )
87albii 1554 . . . . . 6  |-  ( A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. x ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H ) )
9 dfss2 3111 . . . . . 6  |-  ( ( 
~~>v  " ( H  ^m  NN ) )  C_  H  <->  A. x ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H ) )
108, 9bitr4i 245 . . . . 5  |-  ( A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( 
~~>v  " ( H  ^m  NN ) )  C_  H
)
112, 10bitri 242 . . . 4  |-  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( 
~~>v  " ( H  ^m  NN ) )  C_  H
)
12 nnex 9685 . . . . . . . 8  |-  NN  e.  _V
13 elmapg 6718 . . . . . . . 8  |-  ( ( H  e.  SH  /\  NN  e.  _V )  -> 
( f  e.  ( H  ^m  NN )  <-> 
f : NN --> H ) )
1412, 13mpan2 655 . . . . . . 7  |-  ( H  e.  SH  ->  (
f  e.  ( H  ^m  NN )  <->  f : NN
--> H ) )
1514anbi1d 688 . . . . . 6  |-  ( H  e.  SH  ->  (
( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  <-> 
( f : NN --> H  /\  f  ~~>v  x ) ) )
1615imbi1d 310 . . . . 5  |-  ( H  e.  SH  ->  (
( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
)  <->  ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
17162albidv 2007 . . . 4  |-  ( H  e.  SH  ->  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
)  <->  A. f A. x
( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H ) ) )
1811, 17syl5bbr 252 . . 3  |-  ( H  e.  SH  ->  (
(  ~~>v  " ( H  ^m  NN ) )  C_  H  <->  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
) ) )
1918pm5.32i 621 . 2  |-  ( ( H  e.  SH  /\  (  ~~>v  " ( H  ^m  NN ) )  C_  H
)  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
201, 19bitri 242 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    e. wcel 1621   _Vcvv 2740    C_ wss 3094   class class class wbr 3963   "cima 4629   -->wf 4634  (class class class)co 5757    ^m cmap 6705   NNcn 9679    ~~>v chli 21432   SHcsh 21433   CHcch 21434
This theorem is referenced by:  chlimi  21739  isch3  21746  helch  21748  hsn0elch  21752  chintcli  21835  chscl  22163  nlelchi  22566  hmopidmchi  22656
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-i2m1 8738  ax-1ne0 8739  ax-rrecex 8742  ax-cnre 8743
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-recs 6321  df-rdg 6356  df-map 6707  df-n 9680  df-ch 21726
  Copyright terms: Public domain W3C validator