HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Unicode version

Theorem isch2 21633
Description: Closed subspace  H of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
Distinct variable group:    x, f, H

Proof of Theorem isch2
StepHypRef Expression
1 isch 21632 . 2  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  (  ~~>v  "
( H  ^m  NN ) )  C_  H
) )
2 alcom 1568 . . . . 5  |-  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
3 19.23v 2021 . . . . . . . 8  |-  ( A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
4 vex 2730 . . . . . . . . . 10  |-  x  e. 
_V
54elima2 4925 . . . . . . . . 9  |-  ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  <->  E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x ) )
65imbi1i 317 . . . . . . . 8  |-  ( ( x  e.  (  ~~>v  "
( H  ^m  NN ) )  ->  x  e.  H )  <->  ( E. f ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
) )
73, 6bitr4i 245 . . . . . . 7  |-  ( A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H
) )
87albii 1554 . . . . . 6  |-  ( A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  A. x ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H ) )
9 dfss2 3092 . . . . . 6  |-  ( ( 
~~>v  " ( H  ^m  NN ) )  C_  H  <->  A. x ( x  e.  (  ~~>v  " ( H  ^m  NN ) )  ->  x  e.  H ) )
108, 9bitr4i 245 . . . . 5  |-  ( A. x A. f ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( 
~~>v  " ( H  ^m  NN ) )  C_  H
)
112, 10bitri 242 . . . 4  |-  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H )  <->  ( 
~~>v  " ( H  ^m  NN ) )  C_  H
)
12 nnex 9632 . . . . . . . 8  |-  NN  e.  _V
13 elmapg 6671 . . . . . . . 8  |-  ( ( H  e.  SH  /\  NN  e.  _V )  -> 
( f  e.  ( H  ^m  NN )  <-> 
f : NN --> H ) )
1412, 13mpan2 655 . . . . . . 7  |-  ( H  e.  SH  ->  (
f  e.  ( H  ^m  NN )  <->  f : NN
--> H ) )
1514anbi1d 688 . . . . . 6  |-  ( H  e.  SH  ->  (
( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  <-> 
( f : NN --> H  /\  f  ~~>v  x ) ) )
1615imbi1d 310 . . . . 5  |-  ( H  e.  SH  ->  (
( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
)  <->  ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
17162albidv 2006 . . . 4  |-  ( H  e.  SH  ->  ( A. f A. x ( ( f  e.  ( H  ^m  NN )  /\  f  ~~>v  x )  ->  x  e.  H
)  <->  A. f A. x
( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H ) ) )
1811, 17syl5bbr 252 . . 3  |-  ( H  e.  SH  ->  (
(  ~~>v  " ( H  ^m  NN ) )  C_  H  <->  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H
) ) )
1918pm5.32i 621 . 2  |-  ( ( H  e.  SH  /\  (  ~~>v  " ( H  ^m  NN ) )  C_  H
)  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
201, 19bitri 242 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    e. wcel 1621   _Vcvv 2727    C_ wss 3078   class class class wbr 3920   "cima 4583   -->wf 4588  (class class class)co 5710    ^m cmap 6658   NNcn 9626    ~~>v chli 21337   SHcsh 21338   CHcch 21339
This theorem is referenced by:  chlimi  21644  isch3  21651  helch  21653  hsn0elch  21657  chintcli  21740  chscl  22068  nlelchi  22471  hmopidmchi  22561
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-i2m1 8685  ax-1ne0 8686  ax-rrecex 8689  ax-cnre 8690
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-map 6660  df-n 9627  df-ch 21631
  Copyright terms: Public domain W3C validator