MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet2 Unicode version

Theorem iscmet2 18683
Description: A metric  D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet2.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
iscmet2  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  ( Cau `  D )  C_  dom  (
~~> t `  J ) ) )

Proof of Theorem iscmet2
StepHypRef Expression
1 cmetmet 18675 . . 3  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 iscmet2.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
32cmetcau 18678 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  f  e.  ( Cau `  D
) )  ->  f  e.  dom  ( ~~> t `  J ) )
43ex 425 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  ( f  e.  ( Cau `  D
)  ->  f  e.  dom  ( ~~> t `  J
) ) )
54ssrdv 3160 . . 3  |-  ( D  e.  ( CMet `  X
)  ->  ( Cau `  D )  C_  dom  (
~~> t `  J ) )
61, 5jca 520 . 2  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( Met `  X
)  /\  ( Cau `  D )  C_  dom  (
~~> t `  J ) ) )
7 ssel2 3150 . . . . . 6  |-  ( ( ( Cau `  D
)  C_  dom  ( ~~> t `  J )  /\  f  e.  ( Cau `  D
) )  ->  f  e.  dom  ( ~~> t `  J ) )
87a1d 24 . . . . 5  |-  ( ( ( Cau `  D
)  C_  dom  ( ~~> t `  J )  /\  f  e.  ( Cau `  D
) )  ->  (
f : NN --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )
98ralrimiva 2601 . . . 4  |-  ( ( Cau `  D ) 
C_  dom  ( ~~> t `  J )  ->  A. f  e.  ( Cau `  D
) ( f : NN --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )
109adantl 454 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( Cau `  D )  C_  dom  ( ~~> t `  J
) )  ->  A. f  e.  ( Cau `  D
) ( f : NN --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )
11 nnuz 10231 . . . 4  |-  NN  =  ( ZZ>= `  1 )
12 1z 10021 . . . . 5  |-  1  e.  ZZ
1312a1i 12 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( Cau `  D )  C_  dom  ( ~~> t `  J
) )  ->  1  e.  ZZ )
14 simpl 445 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( Cau `  D )  C_  dom  ( ~~> t `  J
) )  ->  D  e.  ( Met `  X
) )
1511, 2, 13, 14iscmet3 18682 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( Cau `  D )  C_  dom  ( ~~> t `  J
) )  ->  ( D  e.  ( CMet `  X )  <->  A. f  e.  ( Cau `  D
) ( f : NN --> X  ->  f  e.  dom  ( ~~> t `  J ) ) ) )
1610, 15mpbird 225 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( Cau `  D )  C_  dom  ( ~~> t `  J
) )  ->  D  e.  ( CMet `  X
) )
176, 16impbii 182 1  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  ( Cau `  D )  C_  dom  (
~~> t `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518    C_ wss 3127   dom cdm 4661   -->wf 4669   ` cfv 4673   1c1 8706   NNcn 9714   ZZcz 9992   Metcme 16333   MetOpencmopn 16335   ~~> tclm 16919   Caucca 18642   CMetcms 18643
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ico 10629  df-fz 10750  df-fl 10892  df-seq 11014  df-exp 11072  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-rlim 11929  df-rest 13290  df-topgen 13307  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-top 16599  df-bases 16601  df-topon 16602  df-ntr 16720  df-nei 16798  df-lm 16922  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-cfil 18644  df-cau 18645  df-cmet 18646
  Copyright terms: Public domain W3C validator