MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn Unicode version

Theorem iscn 16959
Description: The predicate " F is a continuous function from topology  J to topology  K." Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Distinct variable groups:    y, J    y, K    y, X    y, F    y, Y
Dummy variable  f is distinct from all other variables.

Proof of Theorem iscn
StepHypRef Expression
1 cnfval 16957 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
21eleq2d 2351 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }
) )
3 cnveq 4854 . . . . . . 7  |-  ( f  =  F  ->  `' f  =  `' F
)
43imaeq1d 5010 . . . . . 6  |-  ( f  =  F  ->  ( `' f " y
)  =  ( `' F " y ) )
54eleq1d 2350 . . . . 5  |-  ( f  =  F  ->  (
( `' f "
y )  e.  J  <->  ( `' F " y )  e.  J ) )
65ralbidv 2564 . . . 4  |-  ( f  =  F  ->  ( A. y  e.  K  ( `' f " y
)  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J ) )
76elrab 2924 . . 3  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( `' F " y )  e.  J ) )
8 toponmax 16660 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
9 toponmax 16660 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
10 elmapg 6780 . . . . 5  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
118, 9, 10syl2anr 466 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1211anbi1d 687 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
137, 12syl5bb 250 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f
" y )  e.  J }  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
142, 13bitrd 246 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   {crab 2548   `'ccnv 4687   "cima 4691   -->wf 5217   ` cfv 5221  (class class class)co 5819    ^m cmap 6767  TopOnctopon 16626    Cn ccn 16948
This theorem is referenced by:  iscn2  16962  cnf2  16973  tgcn  16976  ssidcn  16979  iscncl  16992  cnntr  16998  cnss1  16999  cnss2  17000  cncnp  17003  cnrest  17007  cnrest2  17008  cndis  17013  cnindis  17014  kgencn  17245  kgencn3  17247  tx1cn  17297  tx2cn  17298  txdis1cn  17323  qtopid  17390  qtopcn  17399  qtopf1  17501  divstgplem  17797  cvmlift2lem9a  23238  rfcnpre1  27089
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-map 6769  df-top 16630  df-topon 16633  df-cn 16951
  Copyright terms: Public domain W3C validator