MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscncl Unicode version

Theorem iscncl 16925
Description: A definition of a continuous function using closed sets. Theorem 1 (d) of [BourbakiTop1] p. I.9. (Contributed by FL, 19-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscncl  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
Distinct variable groups:    y, F    y, J    y, K    y, X    y, Y

Proof of Theorem iscncl
StepHypRef Expression
1 cnf2 16906 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expa 1156 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  F : X --> Y )
3 cnclima 16924 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  ( Clsd `  K ) )  -> 
( `' F "
y )  e.  (
Clsd `  J )
)
43ralrimiva 2597 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
)
54adantl 454 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
)
62, 5jca 520 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )
7 simprl 735 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  F : X --> Y )
8 toponuni 16592 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
98ad3antrrr 713 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  X  =  U. J
)
10 simplrl 739 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  F : X --> Y )
11 fimacnv 5556 . . . . . . . . . . 11  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
1211eqcomd 2261 . . . . . . . . . 10  |-  ( F : X --> Y  ->  X  =  ( `' F " Y ) )
1310, 12syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  X  =  ( `' F " Y ) )
149, 13eqtr3d 2290 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  U. J  =  ( `' F " Y ) )
1514difeq1d 3235 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  =  ( ( `' F " Y )  \  ( `' F " x ) ) )
16 ffun 5294 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
17 funcnvcnv 5211 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  `' `' F )
1810, 16, 173syl 20 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  Fun  `' `' F
)
19 imadif 5230 . . . . . . . 8  |-  ( Fun  `' `' F  ->  ( `' F " ( Y 
\  x ) )  =  ( ( `' F " Y ) 
\  ( `' F " x ) ) )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
( Y  \  x
) )  =  ( ( `' F " Y )  \  ( `' F " x ) ) )
2115, 20eqtr4d 2291 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  =  ( `' F "
( Y  \  x
) ) )
22 simpllr 738 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  K  e.  (TopOn `  Y ) )
23 toponuni 16592 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  Y  =  U. K
)
2524difeq1d 3235 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( Y  \  x
)  =  ( U. K  \  x ) )
26 topontop 16591 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2722, 26syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  K  e.  Top )
28 eqid 2256 . . . . . . . . . 10  |-  U. K  =  U. K
2928opncld 16697 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( U. K  \  x )  e.  (
Clsd `  K )
)
3027, 29sylancom 651 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. K  \  x )  e.  (
Clsd `  K )
)
3125, 30eqeltrd 2330 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( Y  \  x
)  e.  ( Clsd `  K ) )
32 simplrr 740 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  A. y  e.  (
Clsd `  K )
( `' F "
y )  e.  (
Clsd `  J )
)
33 imaeq2 4961 . . . . . . . . 9  |-  ( y  =  ( Y  \  x )  ->  ( `' F " y )  =  ( `' F " ( Y  \  x
) ) )
3433eleq1d 2322 . . . . . . . 8  |-  ( y  =  ( Y  \  x )  ->  (
( `' F "
y )  e.  (
Clsd `  J )  <->  ( `' F " ( Y 
\  x ) )  e.  ( Clsd `  J
) ) )
3534rcla4v 2831 . . . . . . 7  |-  ( ( Y  \  x )  e.  ( Clsd `  K
)  ->  ( A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
)  ->  ( `' F " ( Y  \  x ) )  e.  ( Clsd `  J
) ) )
3631, 32, 35sylc 58 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
( Y  \  x
) )  e.  (
Clsd `  J )
)
3721, 36eqeltrd 2330 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  e.  ( Clsd `  J
) )
38 topontop 16591 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3938ad3antrrr 713 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  J  e.  Top )
40 cnvimass 4986 . . . . . . . 8  |-  ( `' F " x ) 
C_  dom  F
41 fdm 5296 . . . . . . . . 9  |-  ( F : X --> Y  ->  dom  F  =  X )
4210, 41syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  dom  F  =  X )
4340, 42syl5sseq 3168 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  C_  X
)
4443, 9sseqtrd 3156 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  C_  U. J
)
45 eqid 2256 . . . . . . 7  |-  U. J  =  U. J
4645isopn2 16696 . . . . . 6  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( U. J  \  ( `' F " x ) )  e.  ( Clsd `  J ) ) )
4739, 44, 46syl2anc 645 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( ( `' F " x )  e.  J  <->  ( U. J  \  ( `' F " x ) )  e.  ( Clsd `  J ) ) )
4837, 47mpbird 225 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
4948ralrimiva 2597 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  A. x  e.  K  ( `' F " x )  e.  J )
50 iscn 16892 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
5150adantr 453 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  -> 
( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J
) ) )
527, 49, 51mpbir2and 893 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  F  e.  ( J  Cn  K ) )
536, 52impbida 808 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516    \ cdif 3091    C_ wss 3094   U.cuni 3768   `'ccnv 4625   dom cdm 4626   "cima 4629   Fun wfun 4632   -->wf 4634   ` cfv 4638  (class class class)co 5757   Topctop 16558  TopOnctopon 16559   Clsdccld 16680    Cn ccn 16881
This theorem is referenced by:  cncls2  16929  paste  16949  cmphaushmeo  17418  ubthlem1  21374  ubthlem2  21375
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-map 6707  df-top 16563  df-topon 16566  df-cld 16683  df-cn 16884
  Copyright terms: Public domain W3C validator