MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp Unicode version

Theorem iscnp 16962
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y
Dummy variable  f is distinct from all other variables.

Proof of Theorem iscnp
StepHypRef Expression
1 cnpval 16961 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
21eleq2d 2352 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } ) )
3 fveq1 5485 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  P )  =  ( F `  P ) )
43eleq1d 2351 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
5 imaeq1 5007 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f " x )  =  ( F "
x ) )
65sseq1d 3207 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f " x
)  C_  y  <->  ( F " x )  C_  y
) )
76anbi2d 686 . . . . . . . 8  |-  ( f  =  F  ->  (
( P  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
87rexbidv 2566 . . . . . . 7  |-  ( f  =  F  ->  ( E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y ) ) )
94, 8imbi12d 313 . . . . . 6  |-  ( f  =  F  ->  (
( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
109ralbidv 2565 . . . . 5  |-  ( f  =  F  ->  ( A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1110elrab 2925 . . . 4  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( (
f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
12 toponmax 16661 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
13 toponmax 16661 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
14 elmapg 6781 . . . . . 6  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
1512, 13, 14syl2anr 466 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1615anbi1d 687 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
1711, 16syl5bb 250 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
18173adant3 977 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) }  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
192, 18bitrd 246 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545   E.wrex 2546   {crab 2549    C_ wss 3154   "cima 4692   -->wf 5218   ` cfv 5222  (class class class)co 5820    ^m cmap 6768  TopOnctopon 16627    CnP ccnp 16950
This theorem is referenced by:  iscnp2  16964  iscnp3  16969  tgcnp  16978  cnconst2  17006  cnpresti  17011  cnprest  17012  cnprest2  17013  1stccnp  17183  cnpflf2  17690  symgtgp  17779  ghmcnp  17792  ellimc2  19222  xrlimcnp  20258  iscnp4  24963
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-map 6770  df-top 16631  df-topon 16634  df-cnp 16953
  Copyright terms: Public domain W3C validator