MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Unicode version

Theorem iscnp2 16801
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscnp2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp2
StepHypRef Expression
1 n0i 3367 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  -.  ( ( J  CnP  K ) `  P )  =  (/) )
2 df-ov 5713 . . . . . . . . . 10  |-  ( J  CnP  K )  =  (  CnP  `  <. J ,  K >. )
3 ndmfv 5405 . . . . . . . . . 10  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  (  CnP  ` 
<. J ,  K >. )  =  (/) )
42, 3syl5eq 2297 . . . . . . . . 9  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( J  CnP  K )  =  (/) )
54fveq1d 5379 . . . . . . . 8  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (
(/) `  P )
)
6 fv01 5411 . . . . . . . 8  |-  ( (/) `  P )  =  (/)
75, 6syl6eq 2301 . . . . . . 7  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (/) )
81, 7nsyl2 121 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  dom  CnP  )
9 df-cnp 16790 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
10 ssrab2 3179 . . . . . . . . . . 11  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j )
11 ovex 5735 . . . . . . . . . . . 12  |-  ( U. k  ^m  U. j )  e.  _V
1211elpw2 4064 . . . . . . . . . . 11  |-  ( { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) }  e.  ~P ( U. k  ^m  U. j
)  <->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j ) )
1310, 12mpbir 202 . . . . . . . . . 10  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
1413rgenw 2572 . . . . . . . . 9  |-  A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
15 eqid 2253 . . . . . . . . . 10  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )
1615fmpt 5533 . . . . . . . . 9  |-  ( A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )  <->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j ) )
1714, 16mpbi 201 . . . . . . . 8  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) : U. j
--> ~P ( U. k  ^m  U. j )
18 vex 2730 . . . . . . . . 9  |-  j  e. 
_V
1918uniex 4407 . . . . . . . 8  |-  U. j  e.  _V
2011pwex 4087 . . . . . . . 8  |-  ~P ( U. k  ^m  U. j
)  e.  _V
21 fex2 5258 . . . . . . . 8  |-  ( ( ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j )  /\  U. j  e.  _V  /\  ~P ( U. k  ^m  U. j )  e.  _V )  ->  ( x  e. 
U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  e.  _V )
2217, 19, 20, 21mp3an 1282 . . . . . . 7  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  e.  _V
239, 22dmmpt2 6046 . . . . . 6  |-  dom  CnP  =  ( Top  X.  Top )
248, 23syl6eleq 2343 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  ( Top 
X.  Top ) )
25 opelxp 4626 . . . . 5  |-  ( <. J ,  K >.  e.  ( Top  X.  Top ) 
<->  ( J  e.  Top  /\  K  e.  Top )
)
2624, 25sylib 190 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top ) )
2726simpld 447 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
2826simprd 451 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
29 elfvdm 5407 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  dom  (  J  CnP  K ) )
30 iscn.1 . . . . . . . . 9  |-  X  = 
U. J
3130toptopon 16503 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32 iscn.2 . . . . . . . . 9  |-  Y  = 
U. K
3332toptopon 16503 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
34 cnpfval 16796 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3531, 33, 34syl2anb 467 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  CnP  K
)  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3626, 35syl 17 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
3736dmeqd 4788 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  (  J  CnP  K )  =  dom  (  x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
38 ovex 5735 . . . . . . . 8  |-  ( Y  ^m  X )  e. 
_V
3938rabex 4061 . . . . . . 7  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V
4039rgenw 2572 . . . . . 6  |-  A. x  e.  X  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  _V
41 dmmptg 5076 . . . . . 6  |-  ( A. x  e.  X  {
f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V  ->  dom  (  x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )  =  X )
4240, 41ax-mp 10 . . . . 5  |-  dom  (  x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  =  X
4337, 42syl6eq 2301 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  (  J  CnP  K )  =  X )
4429, 43eleqtrd 2329 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X )
4527, 28, 443jca 1137 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X ) )
46 biid 229 . . 3  |-  ( P  e.  X  <->  P  e.  X )
47 iscnp 16799 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
4831, 33, 46, 47syl3anb 1230 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
4945, 48biadan2 626 1  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   {crab 2512   _Vcvv 2727    C_ wss 3078   (/)c0 3362   ~Pcpw 3530   <.cop 3547   U.cuni 3727    e. cmpt 3974    X. cxp 4578   dom cdm 4580   "cima 4583   -->wf 4588   ` cfv 4592  (class class class)co 5710    ^m cmap 6658   Topctop 16463  TopOnctopon 16464    CnP ccnp 16787
This theorem is referenced by:  cnptop1  16804  cnptop2  16805  cnprcl  16807  cnpf  16809  cnpimaex  16818  cnpnei  16825  cnpco  16828  cnprest  16849  cnprest2  16850
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660  df-top 16468  df-topon 16471  df-cnp 16790
  Copyright terms: Public domain W3C validator