MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Unicode version

Theorem iscnp2 17303
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscnp2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp2
Dummy variables  f 
g  j  k  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3633 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  -.  ( ( J  CnP  K ) `  P )  =  (/) )
2 df-ov 6084 . . . . . . . . . 10  |-  ( J  CnP  K )  =  (  CnP  `  <. J ,  K >. )
3 ndmfv 5755 . . . . . . . . . 10  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  (  CnP  ` 
<. J ,  K >. )  =  (/) )
42, 3syl5eq 2480 . . . . . . . . 9  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( J  CnP  K )  =  (/) )
54fveq1d 5730 . . . . . . . 8  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (
(/) `  P )
)
6 fv01 5763 . . . . . . . 8  |-  ( (/) `  P )  =  (/)
75, 6syl6eq 2484 . . . . . . 7  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (/) )
81, 7nsyl2 121 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  dom  CnP  )
9 df-cnp 17292 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
10 ssrab2 3428 . . . . . . . . . . 11  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j )
11 ovex 6106 . . . . . . . . . . . 12  |-  ( U. k  ^m  U. j )  e.  _V
1211elpw2 4364 . . . . . . . . . . 11  |-  ( { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) }  e.  ~P ( U. k  ^m  U. j
)  <->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j ) )
1310, 12mpbir 201 . . . . . . . . . 10  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
1413rgenw 2773 . . . . . . . . 9  |-  A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
15 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )
1615fmpt 5890 . . . . . . . . 9  |-  ( A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )  <->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j ) )
1714, 16mpbi 200 . . . . . . . 8  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) : U. j
--> ~P ( U. k  ^m  U. j )
18 vex 2959 . . . . . . . . 9  |-  j  e. 
_V
1918uniex 4705 . . . . . . . 8  |-  U. j  e.  _V
2011pwex 4382 . . . . . . . 8  |-  ~P ( U. k  ^m  U. j
)  e.  _V
21 fex2 5603 . . . . . . . 8  |-  ( ( ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j )  /\  U. j  e.  _V  /\  ~P ( U. k  ^m  U. j )  e.  _V )  ->  ( x  e. 
U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  e.  _V )
2217, 19, 20, 21mp3an 1279 . . . . . . 7  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  e.  _V
239, 22dmmpt2 6421 . . . . . 6  |-  dom  CnP  =  ( Top  X.  Top )
248, 23syl6eleq 2526 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  ( Top 
X.  Top ) )
25 opelxp 4908 . . . . 5  |-  ( <. J ,  K >.  e.  ( Top  X.  Top ) 
<->  ( J  e.  Top  /\  K  e.  Top )
)
2624, 25sylib 189 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top ) )
2726simpld 446 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
2826simprd 450 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
29 elfvdm 5757 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  dom  ( J  CnP  K ) )
30 iscn.1 . . . . . . . . 9  |-  X  = 
U. J
3130toptopon 16998 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32 iscn.2 . . . . . . . . 9  |-  Y  = 
U. K
3332toptopon 16998 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
34 cnpfval 17298 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3531, 33, 34syl2anb 466 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  CnP  K
)  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3626, 35syl 16 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
3736dmeqd 5072 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
38 ovex 6106 . . . . . . . 8  |-  ( Y  ^m  X )  e. 
_V
3938rabex 4354 . . . . . . 7  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V
4039rgenw 2773 . . . . . 6  |-  A. x  e.  X  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  _V
41 dmmptg 5367 . . . . . 6  |-  ( A. x  e.  X  {
f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V  ->  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )  =  X )
4240, 41ax-mp 8 . . . . 5  |-  dom  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  =  X
4337, 42syl6eq 2484 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  X )
4429, 43eleqtrd 2512 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X )
4527, 28, 443jca 1134 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X ) )
46 biid 228 . . 3  |-  ( P  e.  X  <->  P  e.  X )
47 iscnp 17301 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
4831, 33, 46, 47syl3anb 1227 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
4945, 48biadan2 624 1  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   <.cop 3817   U.cuni 4015    e. cmpt 4266    X. cxp 4876   dom cdm 4878   "cima 4881   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   Topctop 16958  TopOnctopon 16959    CnP ccnp 17289
This theorem is referenced by:  cnptop1  17306  cnptop2  17307  cnprcl  17309  cnpf  17311  cnpimaex  17320  cnpnei  17328  cnpco  17331  cnprest  17353  cnprest2  17354
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-map 7020  df-top 16963  df-topon 16966  df-cnp 17292
  Copyright terms: Public domain W3C validator