Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isconcl5ab Unicode version

Theorem isconcl5ab 25513
Description: Two distinct lines intersect in at most one point. Proposition 4 of [AitkenIBG] p. 3. (For my private use only. Don't use.) (Contributed by FL, 25-Feb-2016.)
Hypotheses
Ref Expression
isconcl5a.1  |-  L  =  (PLines `  F )
isconcl5a.2  |-  P  =  (PPoints `  F )
isconcl5a.3  |-  ( ph  ->  F  e. Ig )
isconcl5a.4  |-  ( ph  -> 
L1  e.  L )
isconcl5a.5  |-  ( ph  ->  L 2  e.  L
)
isconcl5a.6  |-  ( ph  -> 
L1  =/=  L 2
)
Assertion
Ref Expression
isconcl5ab  |-  ( ph  ->  E* p ( p  e.  L1  /\  p  e.  L 2 ) )
Distinct variable groups:    p, L1    p, L 2    ph, p
Allowed substitution hints:    P( p)    F( p)    L( p)

Proof of Theorem isconcl5ab
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 vex 2792 . . . . . . 7  |-  q  e. 
_V
2 eleq1 2344 . . . . . . . 8  |-  ( p  =  q  ->  (
p  e.  L1  <->  q  e.  L1 ) )
3 eleq1 2344 . . . . . . . 8  |-  ( p  =  q  ->  (
p  e.  L 2  <->  q  e.  L 2 )
)
42, 3anbi12d 691 . . . . . . 7  |-  ( p  =  q  ->  (
( p  e.  L1  /\  p  e.  L 2
)  <->  ( q  e.  L1  /\  q  e.  L 2 ) ) )
51, 4sbcie 3026 . . . . . 6  |-  ( [. q  /  p ]. (
p  e.  L1  /\  p  e.  L 2 )  <->  ( q  e.  L1  /\  q  e.  L 2 ) )
6 idd 21 . . . . . . . . 9  |-  ( ( p  e.  L1  /\  p  e.  L 2 )  -> 
( p  =  q  ->  p  =  q ) )
76a1ii 24 . . . . . . . 8  |-  ( ph  ->  ( ( q  e.  L1  /\  q  e.  L 2 )  ->  (
( p  e.  L1  /\  p  e.  L 2
)  ->  ( p  =  q  ->  p  =  q ) ) ) )
87com14 82 . . . . . . 7  |-  ( p  =  q  ->  (
( q  e.  L1  /\  q  e.  L 2
)  ->  ( (
p  e.  L1  /\  p  e.  L 2 )  -> 
( ph  ->  p  =  q ) ) ) )
9 isconcl5a.2 . . . . . . . . . . . . 13  |-  P  =  (PPoints `  F )
10 isconcl5a.1 . . . . . . . . . . . . 13  |-  L  =  (PLines `  F )
11 eqid 2284 . . . . . . . . . . . . 13  |-  ( line `  F )  =  (
line `  F )
12 isconcl5a.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e. Ig )
1312adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  F  e. Ig )
14 isconcl5a.4 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> 
L1  e.  L )
159, 10, 12, 14isig12 25475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
L1  C_  P )
1615sseld 3180 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( p  e.  L1  ->  p  e.  P ) )
1716com12 27 . . . . . . . . . . . . . . . 16  |-  ( p  e.  L1  ->  ( ph  ->  p  e.  P ) )
1817adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  L1  /\  p  e.  L 2 )  -> 
( ph  ->  p  e.  P ) )
19183ad2ant3 978 . . . . . . . . . . . . . 14  |-  ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  ->  ( ph  ->  p  e.  P ) )
2019imp 418 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  p  e.  P )
2115sseld 3180 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( q  e.  L1  ->  q  e.  P ) )
2221com12 27 . . . . . . . . . . . . . . . 16  |-  ( q  e.  L1  ->  ( ph  ->  q  e.  P ) )
2322adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  L1  /\  q  e.  L 2 )  -> 
( ph  ->  q  e.  P ) )
24233ad2ant2 977 . . . . . . . . . . . . . 14  |-  ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  ->  ( ph  ->  q  e.  P ) )
2524imp 418 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  -> 
q  e.  P )
26 simpl1 958 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  p  =/=  q )
27 simpl3l 1010 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  p  e.  L1 )
28 simpl2l 1008 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  -> 
q  e.  L1 )
2914adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  L1  e.  L )
309, 10, 11, 13, 20, 25, 26, 27, 28, 29lineval42 25491 . . . . . . . . . . . 12  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  L1  =  ( p (
line `  F )
q ) )
31 simpl3r 1011 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  p  e.  L 2
)
32 simpl2r 1009 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  -> 
q  e.  L 2
)
33 isconcl5a.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  L 2  e.  L
)
3433adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  L 2  e.  L
)
359, 10, 11, 13, 20, 25, 26, 31, 32, 34lineval42 25491 . . . . . . . . . . . 12  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  L 2  =  (
p ( line `  F
) q ) )
3630, 35eqtr4d 2319 . . . . . . . . . . 11  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  L1  =  L 2 )
37 isconcl5a.6 . . . . . . . . . . . . 13  |-  ( ph  -> 
L1  =/=  L 2
)
3837neneqd 2463 . . . . . . . . . . . 12  |-  ( ph  ->  -.  L1  =  L 2 )
3938adantl 452 . . . . . . . . . . 11  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  ->  -.  L1  =  L 2
)
4036, 39jca 518 . . . . . . . . . 10  |-  ( ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  /\  ph )  -> 
( L1  =  L 2  /\  -.  L1  =  L 2 ) )
4140ex 423 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  ->  ( ph  ->  (
L1  =  L 2  /\  -.  L1  =  L 2 ) ) )
42 pm2.24 101 . . . . . . . . . 10  |-  ( L1  =  L 2  ->  ( -.  L1  =  L 2  ->  p  =  q ) )
4342imp 418 . . . . . . . . 9  |-  ( (
L1  =  L 2  /\  -.  L1  =  L 2 )  ->  p  =  q )
4441, 43syl6 29 . . . . . . . 8  |-  ( ( p  =/=  q  /\  ( q  e.  L1  /\  q  e.  L 2
)  /\  ( p  e.  L1  /\  p  e.  L 2 ) )  ->  ( ph  ->  p  =  q ) )
45443exp 1150 . . . . . . 7  |-  ( p  =/=  q  ->  (
( q  e.  L1  /\  q  e.  L 2
)  ->  ( (
p  e.  L1  /\  p  e.  L 2 )  -> 
( ph  ->  p  =  q ) ) ) )
468, 45pm2.61ine 2523 . . . . . 6  |-  ( ( q  e.  L1  /\  q  e.  L 2 )  -> 
( ( p  e.  L1  /\  p  e.  L 2 )  ->  ( ph  ->  p  =  q ) ) )
475, 46sylbi 187 . . . . 5  |-  ( [. q  /  p ]. (
p  e.  L1  /\  p  e.  L 2 )  -> 
( ( p  e.  L1  /\  p  e.  L 2 )  ->  ( ph  ->  p  =  q ) ) )
4847impcom 419 . . . 4  |-  ( ( ( p  e.  L1  /\  p  e.  L 2
)  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  -> 
( ph  ->  p  =  q ) )
4948com12 27 . . 3  |-  ( ph  ->  ( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q ) )
5049alrimivv 1618 . 2  |-  ( ph  ->  A. p A. q
( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q ) )
51 nfv 1605 . . . 4  |-  F/ q ( p  e.  L1  /\  p  e.  L 2
)
5251mo3 2175 . . 3  |-  ( E* p ( p  e.  L1  /\  p  e.  L 2 )  <->  A. p A. q ( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [ q  /  p ]
( p  e.  L1  /\  p  e.  L 2
) )  ->  p  =  q ) )
53 sbsbc 2996 . . . . . 6  |-  ( [ q  /  p ]
( p  e.  L1  /\  p  e.  L 2
)  <->  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2
) )
5453anbi2i 675 . . . . 5  |-  ( ( ( p  e.  L1  /\  p  e.  L 2
)  /\  [ q  /  p ] ( p  e.  L1  /\  p  e.  L 2 ) )  <-> 
( ( p  e.  L1  /\  p  e.  L 2 )  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) ) )
5554imbi1i 315 . . . 4  |-  ( ( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [
q  /  p ]
( p  e.  L1  /\  p  e.  L 2
) )  ->  p  =  q )  <->  ( (
( p  e.  L1  /\  p  e.  L 2
)  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q )
)
56552albii 1554 . . 3  |-  ( A. p A. q ( ( ( p  e.  L1  /\  p  e.  L 2
)  /\  [ q  /  p ] ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q )  <->  A. p A. q
( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q ) )
5752, 56bitri 240 . 2  |-  ( E* p ( p  e.  L1  /\  p  e.  L 2 )  <->  A. p A. q ( ( ( p  e.  L1  /\  p  e.  L 2 )  /\  [. q  /  p ]. ( p  e.  L1  /\  p  e.  L 2 ) )  ->  p  =  q ) )
5850, 57sylibr 203 1  |-  ( ph  ->  E* p ( p  e.  L1  /\  p  e.  L 2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623   [wsb 1630    e. wcel 1685   E*wmo 2145    =/= wne 2447   [.wsbc 2992   ` cfv 5221  (class class class)co 5820  PPointscpoints 25467  PLinescplines 25469  Igcig 25471   linecline 25487
This theorem is referenced by:  isconcl6ab  25515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-ig2 25472  df-li 25488
  Copyright terms: Public domain W3C validator