MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs Unicode version

Theorem isdrs 14346
Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b  |-  B  =  ( Base `  K
)
isdrs.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
isdrs  |-  ( K  e. Dirset 
<->  ( K  e.  Preset  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  (
x  .<_  z  /\  y  .<_  z ) ) )
Distinct variable groups:    x, K, y, z    x, B, y, z    x,  .<_ , y, z

Proof of Theorem isdrs
Dummy variables  f 
b  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
2 isdrs.b . . . . . . 7  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2454 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  B )
4 dfsbcq 3123 . . . . . 6  |-  ( (
Base `  f )  =  B  ->  ( [. ( Base `  f )  /  b ]. [. ( le `  f )  / 
r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x r z  /\  y r z ) )  <->  [. B  / 
b ]. [. ( le
`  f )  / 
r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x r z  /\  y r z ) ) ) )
53, 4syl 16 . . . . 5  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  [. B  /  b ]. [. ( le `  f )  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) ) )
6 fveq2 5687 . . . . . . . 8  |-  ( f  =  K  ->  ( le `  f )  =  ( le `  K
) )
7 isdrs.l . . . . . . . 8  |-  .<_  =  ( le `  K )
86, 7syl6eqr 2454 . . . . . . 7  |-  ( f  =  K  ->  ( le `  f )  = 
.<_  )
9 dfsbcq 3123 . . . . . . 7  |-  ( ( le `  f )  =  .<_  ->  ( [. ( le `  f )  /  r ]. (
b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  [.  .<_  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) ) )
108, 9syl 16 . . . . . 6  |-  ( f  =  K  ->  ( [. ( le `  f
)  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  [.  .<_  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) ) )
1110sbcbidv 3175 . . . . 5  |-  ( f  =  K  ->  ( [. B  /  b ]. [. ( le `  f )  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  [. B  /  b ]. [.  .<_  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) ) )
125, 11bitrd 245 . . . 4  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  [. B  /  b ]. [.  .<_  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) ) )
13 fvex 5701 . . . . . 6  |-  ( Base `  K )  e.  _V
142, 13eqeltri 2474 . . . . 5  |-  B  e. 
_V
15 fvex 5701 . . . . . 6  |-  ( le
`  K )  e. 
_V
167, 15eqeltri 2474 . . . . 5  |-  .<_  e.  _V
17 neeq1 2575 . . . . . . 7  |-  ( b  =  B  ->  (
b  =/=  (/)  <->  B  =/=  (/) ) )
1817adantr 452 . . . . . 6  |-  ( ( b  =  B  /\  r  =  .<_  )  -> 
( b  =/=  (/)  <->  B  =/=  (/) ) )
19 rexeq 2865 . . . . . . . . 9  |-  ( b  =  B  ->  ( E. z  e.  b 
( x r z  /\  y r z )  <->  E. z  e.  B  ( x r z  /\  y r z ) ) )
2019raleqbi1dv 2872 . . . . . . . 8  |-  ( b  =  B  ->  ( A. y  e.  b  E. z  e.  b 
( x r z  /\  y r z )  <->  A. y  e.  B  E. z  e.  B  ( x r z  /\  y r z ) ) )
2120raleqbi1dv 2872 . . . . . . 7  |-  ( b  =  B  ->  ( A. x  e.  b  A. y  e.  b  E. z  e.  b 
( x r z  /\  y r z )  <->  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x r z  /\  y r z ) ) )
22 breq 4174 . . . . . . . . . 10  |-  ( r  =  .<_  ->  ( x r z  <->  x  .<_  z ) )
23 breq 4174 . . . . . . . . . 10  |-  ( r  =  .<_  ->  ( y r z  <->  y  .<_  z ) )
2422, 23anbi12d 692 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( ( x r z  /\  y r z )  <-> 
( x  .<_  z  /\  y  .<_  z ) ) )
2524rexbidv 2687 . . . . . . . 8  |-  ( r  =  .<_  ->  ( E. z  e.  B  ( x r z  /\  y r z )  <->  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) )
26252ralbidv 2708 . . . . . . 7  |-  ( r  =  .<_  ->  ( A. x  e.  B  A. y  e.  B  E. z  e.  B  (
x r z  /\  y r z )  <->  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) )
2721, 26sylan9bb 681 . . . . . 6  |-  ( ( b  =  B  /\  r  =  .<_  )  -> 
( A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x r z  /\  y r z )  <->  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) )
2818, 27anbi12d 692 . . . . 5  |-  ( ( b  =  B  /\  r  =  .<_  )  -> 
( ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x r z  /\  y r z ) )  <->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) ) )
2914, 16, 28sbc2ie 3188 . . . 4  |-  ( [. B  /  b ]. [.  .<_  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x
r z  /\  y
r z ) )  <-> 
( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  (
x  .<_  z  /\  y  .<_  z ) ) )
3012, 29syl6bb 253 . . 3  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) )  <->  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) ) )
31 df-drs 14341 . . 3  |- Dirset  =  {
f  e.  Preset  |  [. ( Base `  f )  /  b ]. [. ( le `  f )  / 
r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  ( x r z  /\  y r z ) ) }
3230, 31elrab2 3054 . 2  |-  ( K  e. Dirset 
<->  ( K  e.  Preset  /\  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  (
x  .<_  z  /\  y  .<_  z ) ) ) )
33 3anass 940 . 2  |-  ( ( K  e.  Preset  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) )  <->  ( K  e.  Preset  /\  ( B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  ( x  .<_  z  /\  y  .<_  z ) ) ) )
3432, 33bitr4i 244 1  |-  ( K  e. Dirset 
<->  ( K  e.  Preset  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  E. z  e.  B  (
x  .<_  z  /\  y  .<_  z ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916   [.wsbc 3121   (/)c0 3588   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491    Preset cpreset 14338  Dirsetcdrs 14339
This theorem is referenced by:  drsdir  14347  drsprs  14348  drsbn0  14349  isdrs2  14351  isipodrs  14542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-nul 4298
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-drs 14341
  Copyright terms: Public domain W3C validator