MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Unicode version

Theorem isfin1-3 7896
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  `' [ C.]  Fr  ~P A ) )

Proof of Theorem isfin1-3
StepHypRef Expression
1 porpss 6133 . . . 4  |- [ C.]  Po  ~P A
2 cnvpo 5119 . . . 4  |-  ( [ C.]  Po  ~P A  <->  `' [ C.]  Po  ~P A )
31, 2mpbi 201 . . 3  |-  `' [ C.]  Po  ~P A
4 pwfi 7035 . . . 4  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
54biimpi 188 . . 3  |-  ( A  e.  Fin  ->  ~P A  e.  Fin )
6 frfi 6987 . . 3  |-  ( ( `' [ C.]  Po  ~P A  /\  ~P A  e.  Fin )  ->  `' [ C.]  Fr  ~P A )
73, 5, 6sylancr 647 . 2  |-  ( A  e.  Fin  ->  `' [ C.] 
Fr  ~P A )
8 inss2 3297 . . . . . 6  |-  ( Fin 
i^i  ~P A )  C_  ~P A
9 pwexg 4088 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
10 ssexg 4057 . . . . . 6  |-  ( ( ( Fin  i^i  ~P A )  C_  ~P A  /\  ~P A  e. 
_V )  ->  ( Fin  i^i  ~P A )  e.  _V )
118, 9, 10sylancr 647 . . . . 5  |-  ( A  e.  V  ->  ( Fin  i^i  ~P A )  e.  _V )
12 0fin 6972 . . . . . . . 8  |-  (/)  e.  Fin
13 0elpw 4074 . . . . . . . 8  |-  (/)  e.  ~P A
14 elin 3266 . . . . . . . 8  |-  ( (/)  e.  ( Fin  i^i  ~P A )  <->  ( (/)  e.  Fin  /\  (/)  e.  ~P A ) )
1512, 13, 14mpbir2an 891 . . . . . . 7  |-  (/)  e.  ( Fin  i^i  ~P A
)
16 ne0i 3368 . . . . . . 7  |-  ( (/)  e.  ( Fin  i^i  ~P A )  ->  ( Fin  i^i  ~P A )  =/=  (/) )
1715, 16ax-mp 10 . . . . . 6  |-  ( Fin 
i^i  ~P A )  =/=  (/)
18 fri 4248 . . . . . 6  |-  ( ( ( ( Fin  i^i  ~P A )  e.  _V  /\  `' [ C.]  Fr  ~P A
)  /\  ( ( Fin  i^i  ~P A ) 
C_  ~P A  /\  ( Fin  i^i  ~P A )  =/=  (/) ) )  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A
)  -.  c `' [
C.]  b )
198, 17, 18mpanr12 669 . . . . 5  |-  ( ( ( Fin  i^i  ~P A )  e.  _V  /\  `' [ C.]  Fr  ~P A
)  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b )
2011, 19sylan 459 . . . 4  |-  ( ( A  e.  V  /\  `' [ C.]  Fr  ~P A
)  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b )
2120ex 425 . . 3  |-  ( A  e.  V  ->  ( `' [ C.]  Fr  ~P A  ->  E. b  e.  ( Fin  i^i  ~P A
) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b ) )
22 inss1 3296 . . . . . 6  |-  ( Fin 
i^i  ~P A )  C_  Fin
23 simpl 445 . . . . . 6  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  b  e.  ( Fin  i^i  ~P A
) )
2422, 23sseldi 3101 . . . . 5  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  b  e.  Fin )
25 ralnex 2517 . . . . . . . 8  |-  ( A. c  e.  ( Fin  i^i 
~P A )  -.  c `' [ C.]  b  <->  -. 
E. c  e.  ( Fin  i^i  ~P A
) c `' [ C.]  b )
2622sseli 3099 . . . . . . . . . . . . . 14  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  e.  Fin )
2726adantr 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  e.  Fin )
28 snfi 6826 . . . . . . . . . . . . 13  |-  { d }  e.  Fin
29 unfi 7009 . . . . . . . . . . . . 13  |-  ( ( b  e.  Fin  /\  { d }  e.  Fin )  ->  ( b  u. 
{ d } )  e.  Fin )
3027, 28, 29sylancl 646 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  Fin )
31 elin 3266 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( Fin  i^i  ~P A )  <->  ( b  e.  Fin  /\  b  e. 
~P A ) )
3231simprbi 452 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  e.  ~P A )
33 vex 2730 . . . . . . . . . . . . . . . . 17  |-  b  e. 
_V
3433elpw 3536 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ~P A  <->  b  C_  A )
3532, 34sylib 190 . . . . . . . . . . . . . . 15  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  C_  A )
3635adantr 453 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  C_  A )
37 snssi 3659 . . . . . . . . . . . . . . 15  |-  ( d  e.  A  ->  { d }  C_  A )
3837ad2antrl 711 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  { d }  C_  A )
3936, 38unssd 3261 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  C_  A
)
40 snex 4110 . . . . . . . . . . . . . . 15  |-  { d }  e.  _V
4133, 40unex 4409 . . . . . . . . . . . . . 14  |-  ( b  u.  { d } )  e.  _V
4241elpw 3536 . . . . . . . . . . . . 13  |-  ( ( b  u.  { d } )  e.  ~P A 
<->  ( b  u.  {
d } )  C_  A )
4339, 42sylibr 205 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  ~P A )
44 elin 3266 . . . . . . . . . . . 12  |-  ( ( b  u.  { d } )  e.  ( Fin  i^i  ~P A
)  <->  ( ( b  u.  { d } )  e.  Fin  /\  ( b  u.  {
d } )  e. 
~P A ) )
4530, 43, 44sylanbrc 648 . . . . . . . . . . 11  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  ( Fin  i^i  ~P A
) )
46 disjsn 3597 . . . . . . . . . . . . . . 15  |-  ( ( b  i^i  { d } )  =  (/)  <->  -.  d  e.  b )
4746biimpri 199 . . . . . . . . . . . . . 14  |-  ( -.  d  e.  b  -> 
( b  i^i  {
d } )  =  (/) )
48 vex 2730 . . . . . . . . . . . . . . 15  |-  d  e. 
_V
4948snnz 3648 . . . . . . . . . . . . . 14  |-  { d }  =/=  (/)
50 disjpss 3412 . . . . . . . . . . . . . 14  |-  ( ( ( b  i^i  {
d } )  =  (/)  /\  { d }  =/=  (/) )  ->  b  C.  ( b  u.  {
d } ) )
5147, 49, 50sylancl 646 . . . . . . . . . . . . 13  |-  ( -.  d  e.  b  -> 
b  C.  ( b  u.  { d } ) )
5251ad2antll 712 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  C.  ( b  u.  {
d } ) )
5341, 33brcnv 4771 . . . . . . . . . . . . 13  |-  ( ( b  u.  { d } ) `' [ C.]  b 
<->  b [ C.]  ( b  u.  { d } ) )
5441brrpss 6132 . . . . . . . . . . . . 13  |-  ( b [
C.]  ( b  u. 
{ d } )  <-> 
b  C.  ( b  u.  { d } ) )
5553, 54bitri 242 . . . . . . . . . . . 12  |-  ( ( b  u.  { d } ) `' [ C.]  b 
<->  b  C.  ( b  u.  { d } ) )
5652, 55sylibr 205 . . . . . . . . . . 11  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } ) `' [ C.]  b )
57 breq1 3923 . . . . . . . . . . . 12  |-  ( c  =  ( b  u. 
{ d } )  ->  ( c `' [
C.]  b  <->  ( b  u.  { d } ) `' [ C.]  b ) )
5857rcla4ev 2821 . . . . . . . . . . 11  |-  ( ( ( b  u.  {
d } )  e.  ( Fin  i^i  ~P A )  /\  (
b  u.  { d } ) `' [ C.]  b )  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b )
5945, 56, 58syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b )
6059expr 601 . . . . . . . . 9  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( -.  d  e.  b  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b ) )
6160con1d 118 . . . . . . . 8  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( -.  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b  ->  d  e.  b ) )
6225, 61syl5bi 210 . . . . . . 7  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b  ->  d  e.  b ) )
6362impancom 429 . . . . . 6  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  ( d  e.  A  ->  d  e.  b ) )
6463ssrdv 3106 . . . . 5  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  A  C_  b
)
65 ssfi 6968 . . . . 5  |-  ( ( b  e.  Fin  /\  A  C_  b )  ->  A  e.  Fin )
6624, 64, 65syl2anc 645 . . . 4  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  A  e.  Fin )
6766rexlimiva 2624 . . 3  |-  ( E. b  e.  ( Fin 
i^i  ~P A ) A. c  e.  ( Fin  i^i 
~P A )  -.  c `' [ C.]  b  ->  A  e.  Fin )
6821, 67syl6 31 . 2  |-  ( A  e.  V  ->  ( `' [ C.]  Fr  ~P A  ->  A  e.  Fin )
)
697, 68impbid2 197 1  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  `' [ C.]  Fr  ~P A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   _Vcvv 2727    u. cun 3076    i^i cin 3077    C_ wss 3078    C. wpss 3079   (/)c0 3362   ~Pcpw 3530   {csn 3544   class class class wbr 3920    Po wpo 4205    Fr wfr 4242   `'ccnv 4579   [ C.] crpss 6128   Fincfn 6749
This theorem is referenced by:  isfin1-4  7897  fin12  7923
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-rpss 6129  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753
  Copyright terms: Public domain W3C validator