MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Unicode version

Theorem isfin1-3 8199
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  `' [ C.]  Fr  ~P A ) )

Proof of Theorem isfin1-3
Dummy variables  b 
c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 porpss 6462 . . . 4  |- [ C.]  Po  ~P A
2 cnvpo 5350 . . . 4  |-  ( [ C.]  Po  ~P A  <->  `' [ C.]  Po  ~P A )
31, 2mpbi 200 . . 3  |-  `' [ C.]  Po  ~P A
4 pwfi 7337 . . . 4  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
54biimpi 187 . . 3  |-  ( A  e.  Fin  ->  ~P A  e.  Fin )
6 frfi 7288 . . 3  |-  ( ( `' [ C.]  Po  ~P A  /\  ~P A  e.  Fin )  ->  `' [ C.]  Fr  ~P A )
73, 5, 6sylancr 645 . 2  |-  ( A  e.  Fin  ->  `' [ C.] 
Fr  ~P A )
8 inss2 3505 . . . . . 6  |-  ( Fin 
i^i  ~P A )  C_  ~P A
9 pwexg 4324 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
10 ssexg 4290 . . . . . 6  |-  ( ( ( Fin  i^i  ~P A )  C_  ~P A  /\  ~P A  e. 
_V )  ->  ( Fin  i^i  ~P A )  e.  _V )
118, 9, 10sylancr 645 . . . . 5  |-  ( A  e.  V  ->  ( Fin  i^i  ~P A )  e.  _V )
12 0fin 7272 . . . . . . . 8  |-  (/)  e.  Fin
13 0elpw 4310 . . . . . . . 8  |-  (/)  e.  ~P A
14 elin 3473 . . . . . . . 8  |-  ( (/)  e.  ( Fin  i^i  ~P A )  <->  ( (/)  e.  Fin  /\  (/)  e.  ~P A ) )
1512, 13, 14mpbir2an 887 . . . . . . 7  |-  (/)  e.  ( Fin  i^i  ~P A
)
16 ne0i 3577 . . . . . . 7  |-  ( (/)  e.  ( Fin  i^i  ~P A )  ->  ( Fin  i^i  ~P A )  =/=  (/) )
1715, 16ax-mp 8 . . . . . 6  |-  ( Fin 
i^i  ~P A )  =/=  (/)
18 fri 4485 . . . . . 6  |-  ( ( ( ( Fin  i^i  ~P A )  e.  _V  /\  `' [ C.]  Fr  ~P A
)  /\  ( ( Fin  i^i  ~P A ) 
C_  ~P A  /\  ( Fin  i^i  ~P A )  =/=  (/) ) )  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A
)  -.  c `' [
C.]  b )
198, 17, 18mpanr12 667 . . . . 5  |-  ( ( ( Fin  i^i  ~P A )  e.  _V  /\  `' [ C.]  Fr  ~P A
)  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b )
2011, 19sylan 458 . . . 4  |-  ( ( A  e.  V  /\  `' [ C.]  Fr  ~P A
)  ->  E. b  e.  ( Fin  i^i  ~P A ) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b )
2120ex 424 . . 3  |-  ( A  e.  V  ->  ( `' [ C.]  Fr  ~P A  ->  E. b  e.  ( Fin  i^i  ~P A
) A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b ) )
22 inss1 3504 . . . . . 6  |-  ( Fin 
i^i  ~P A )  C_  Fin
23 simpl 444 . . . . . 6  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  b  e.  ( Fin  i^i  ~P A
) )
2422, 23sseldi 3289 . . . . 5  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  b  e.  Fin )
25 ralnex 2659 . . . . . . . 8  |-  ( A. c  e.  ( Fin  i^i 
~P A )  -.  c `' [ C.]  b  <->  -. 
E. c  e.  ( Fin  i^i  ~P A
) c `' [ C.]  b )
2622sseli 3287 . . . . . . . . . . . . . 14  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  e.  Fin )
2726adantr 452 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  e.  Fin )
28 snfi 7123 . . . . . . . . . . . . 13  |-  { d }  e.  Fin
29 unfi 7310 . . . . . . . . . . . . 13  |-  ( ( b  e.  Fin  /\  { d }  e.  Fin )  ->  ( b  u. 
{ d } )  e.  Fin )
3027, 28, 29sylancl 644 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  Fin )
31 elin 3473 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( Fin  i^i  ~P A )  <->  ( b  e.  Fin  /\  b  e. 
~P A ) )
3231simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  e.  ~P A )
3332elpwid 3751 . . . . . . . . . . . . . . 15  |-  ( b  e.  ( Fin  i^i  ~P A )  ->  b  C_  A )
3433adantr 452 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  C_  A )
35 snssi 3885 . . . . . . . . . . . . . . 15  |-  ( d  e.  A  ->  { d }  C_  A )
3635ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  { d }  C_  A )
3734, 36unssd 3466 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  C_  A
)
38 vex 2902 . . . . . . . . . . . . . . 15  |-  b  e. 
_V
39 snex 4346 . . . . . . . . . . . . . . 15  |-  { d }  e.  _V
4038, 39unex 4647 . . . . . . . . . . . . . 14  |-  ( b  u.  { d } )  e.  _V
4140elpw 3748 . . . . . . . . . . . . 13  |-  ( ( b  u.  { d } )  e.  ~P A 
<->  ( b  u.  {
d } )  C_  A )
4237, 41sylibr 204 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  ~P A )
43 elin 3473 . . . . . . . . . . . 12  |-  ( ( b  u.  { d } )  e.  ( Fin  i^i  ~P A
)  <->  ( ( b  u.  { d } )  e.  Fin  /\  ( b  u.  {
d } )  e. 
~P A ) )
4430, 42, 43sylanbrc 646 . . . . . . . . . . 11  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } )  e.  ( Fin  i^i  ~P A
) )
45 disjsn 3811 . . . . . . . . . . . . . . 15  |-  ( ( b  i^i  { d } )  =  (/)  <->  -.  d  e.  b )
4645biimpri 198 . . . . . . . . . . . . . 14  |-  ( -.  d  e.  b  -> 
( b  i^i  {
d } )  =  (/) )
47 vex 2902 . . . . . . . . . . . . . . 15  |-  d  e. 
_V
4847snnz 3865 . . . . . . . . . . . . . 14  |-  { d }  =/=  (/)
49 disjpss 3621 . . . . . . . . . . . . . 14  |-  ( ( ( b  i^i  {
d } )  =  (/)  /\  { d }  =/=  (/) )  ->  b  C.  ( b  u.  {
d } ) )
5046, 48, 49sylancl 644 . . . . . . . . . . . . 13  |-  ( -.  d  e.  b  -> 
b  C.  ( b  u.  { d } ) )
5150ad2antll 710 . . . . . . . . . . . 12  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  b  C.  ( b  u.  {
d } ) )
5240, 38brcnv 4995 . . . . . . . . . . . . 13  |-  ( ( b  u.  { d } ) `' [ C.]  b 
<->  b [ C.]  ( b  u.  { d } ) )
5340brrpss 6461 . . . . . . . . . . . . 13  |-  ( b [
C.]  ( b  u. 
{ d } )  <-> 
b  C.  ( b  u.  { d } ) )
5452, 53bitri 241 . . . . . . . . . . . 12  |-  ( ( b  u.  { d } ) `' [ C.]  b 
<->  b  C.  ( b  u.  { d } ) )
5551, 54sylibr 204 . . . . . . . . . . 11  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  (
b  u.  { d } ) `' [ C.]  b )
56 breq1 4156 . . . . . . . . . . . 12  |-  ( c  =  ( b  u. 
{ d } )  ->  ( c `' [
C.]  b  <->  ( b  u.  { d } ) `' [ C.]  b ) )
5756rspcev 2995 . . . . . . . . . . 11  |-  ( ( ( b  u.  {
d } )  e.  ( Fin  i^i  ~P A )  /\  (
b  u.  { d } ) `' [ C.]  b )  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b )
5844, 55, 57syl2anc 643 . . . . . . . . . 10  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  ( d  e.  A  /\  -.  d  e.  b ) )  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b )
5958expr 599 . . . . . . . . 9  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( -.  d  e.  b  ->  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b ) )
6059con1d 118 . . . . . . . 8  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( -.  E. c  e.  ( Fin  i^i  ~P A ) c `' [
C.]  b  ->  d  e.  b ) )
6125, 60syl5bi 209 . . . . . . 7  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  d  e.  A )  ->  ( A. c  e.  ( Fin  i^i  ~P A )  -.  c `' [ C.]  b  ->  d  e.  b ) )
6261impancom 428 . . . . . 6  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  ( d  e.  A  ->  d  e.  b ) )
6362ssrdv 3297 . . . . 5  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  A  C_  b
)
64 ssfi 7265 . . . . 5  |-  ( ( b  e.  Fin  /\  A  C_  b )  ->  A  e.  Fin )
6524, 63, 64syl2anc 643 . . . 4  |-  ( ( b  e.  ( Fin 
i^i  ~P A )  /\  A. c  e.  ( Fin 
i^i  ~P A )  -.  c `' [ C.]  b
)  ->  A  e.  Fin )
6665rexlimiva 2768 . . 3  |-  ( E. b  e.  ( Fin 
i^i  ~P A ) A. c  e.  ( Fin  i^i 
~P A )  -.  c `' [ C.]  b  ->  A  e.  Fin )
6721, 66syl6 31 . 2  |-  ( A  e.  V  ->  ( `' [ C.]  Fr  ~P A  ->  A  e.  Fin )
)
687, 67impbid2 196 1  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  `' [ C.]  Fr  ~P A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   E.wrex 2650   _Vcvv 2899    u. cun 3261    i^i cin 3262    C_ wss 3263    C. wpss 3264   (/)c0 3571   ~Pcpw 3742   {csn 3757   class class class wbr 4153    Po wpo 4442    Fr wfr 4479   `'ccnv 4817   [ C.] crpss 6457   Fincfn 7045
This theorem is referenced by:  isfin1-4  8200  fin12  8226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-rpss 6458  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049
  Copyright terms: Public domain W3C validator