MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Unicode version

Theorem isfinite2 7131
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2  |-  ( A 
~<  om  ->  A  e.  Fin )

Proof of Theorem isfinite2
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 6886 . . 3  |-  Rel  ~<
21brrelex2i 4746 . 2  |-  ( A 
~<  om  ->  om  e.  _V )
3 sdomdom 6905 . . . 4  |-  ( A 
~<  om  ->  A  ~<_  om )
4 domeng 6892 . . . 4  |-  ( om  e.  _V  ->  ( A  ~<_  om  <->  E. y ( A 
~~  y  /\  y  C_ 
om ) ) )
53, 4syl5ib 210 . . 3  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  E. y
( A  ~~  y  /\  y  C_  om )
) )
6 ensym 6926 . . . . . . . . . . 11  |-  ( A 
~~  y  ->  y  ~~  A )
76ad2antrl 708 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~~  A )
8 simpl 443 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~<  om )
9 ensdomtr 7013 . . . . . . . . . 10  |-  ( ( y  ~~  A  /\  A  ~<  om )  ->  y  ~<  om )
107, 8, 9syl2anc 642 . . . . . . . . 9  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~<  om )
11 sdomnen 6906 . . . . . . . . 9  |-  ( y 
~<  om  ->  -.  y  ~~  om )
1210, 11syl 15 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  y  ~~  om )
13 simpr 447 . . . . . . . . 9  |-  ( ( A  ~~  y  /\  y  C_  om )  -> 
y  C_  om )
14 unbnn 7129 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  y  C_  om  /\  A. z  e.  om  E. w  e.  y  z  e.  w )  ->  y  ~~  om )
15143expia 1153 . . . . . . . . 9  |-  ( ( om  e.  _V  /\  y  C_  om )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
162, 13, 15syl2an 463 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
1712, 16mtod 168 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  A. z  e.  om  E. w  e.  y  z  e.  w )
18 rexnal 2567 . . . . . . . . 9  |-  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  <->  -.  A. z  e.  om  E. w  e.  y  z  e.  w
)
19 omsson 4676 . . . . . . . . . . . . 13  |-  om  C_  On
20 sstr 3200 . . . . . . . . . . . . 13  |-  ( ( y  C_  om  /\  om  C_  On )  ->  y  C_  On )
2119, 20mpan2 652 . . . . . . . . . . . 12  |-  ( y 
C_  om  ->  y  C_  On )
22 nnord 4680 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  Ord  z )
23 ssel2 3188 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  C_  On  /\  w  e.  y )  ->  w  e.  On )
24 vex 2804 . . . . . . . . . . . . . . . . . . 19  |-  w  e. 
_V
2524elon 4417 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  On  <->  Ord  w )
2623, 25sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  On  /\  w  e.  y )  ->  Ord  w )
27 ordtri1 4441 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  w  /\  Ord  z )  ->  (
w  C_  z  <->  -.  z  e.  w ) )
2826, 27sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  C_  On  /\  w  e.  y )  /\  Ord  z )  ->  ( w  C_  z 
<->  -.  z  e.  w
) )
2928an32s 779 . . . . . . . . . . . . . . 15  |-  ( ( ( y  C_  On  /\ 
Ord  z )  /\  w  e.  y )  ->  ( w  C_  z  <->  -.  z  e.  w ) )
3029ralbidva 2572 . . . . . . . . . . . . . 14  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( A. w  e.  y  w  C_  z  <->  A. w  e.  y  -.  z  e.  w ) )
31 unissb 3873 . . . . . . . . . . . . . 14  |-  ( U. y  C_  z  <->  A. w  e.  y  w  C_  z
)
32 ralnex 2566 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  y  -.  z  e.  w  <->  -.  E. w  e.  y  z  e.  w )
3332bicomi 193 . . . . . . . . . . . . . 14  |-  ( -. 
E. w  e.  y  z  e.  w  <->  A. w  e.  y  -.  z  e.  w )
3430, 31, 333bitr4g 279 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  -.  E. w  e.  y  z  e.  w ) )
35 ordunisssuc 4511 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  y  C_  suc  z ) )
3634, 35bitr3d 246 . . . . . . . . . . . 12  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
3721, 22, 36syl2an 463 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
38 peano2b 4688 . . . . . . . . . . . . . 14  |-  ( z  e.  om  <->  suc  z  e. 
om )
39 ssnnfi 7098 . . . . . . . . . . . . . 14  |-  ( ( suc  z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4038, 39sylanb 458 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4140ex 423 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4241adantl 452 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4337, 42sylbid 206 . . . . . . . . . 10  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  -> 
y  e.  Fin )
)
4443rexlimdva 2680 . . . . . . . . 9  |-  ( y 
C_  om  ->  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4518, 44syl5bir 209 . . . . . . . 8  |-  ( y 
C_  om  ->  ( -. 
A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4645ad2antll 709 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( -.  A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin )
)
4717, 46mpd 14 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  e.  Fin )
48 simprl 732 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~~  y )
49 enfii 7096 . . . . . 6  |-  ( ( y  e.  Fin  /\  A  ~~  y )  ->  A  e.  Fin )
5047, 48, 49syl2anc 642 . . . . 5  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  e.  Fin )
5150ex 423 . . . 4  |-  ( A 
~<  om  ->  ( ( A  ~~  y  /\  y  C_ 
om )  ->  A  e.  Fin ) )
5251exlimdv 1626 . . 3  |-  ( A 
~<  om  ->  ( E. y ( A  ~~  y  /\  y  C_  om )  ->  A  e.  Fin )
)
535, 52sylcom 25 . 2  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  A  e. 
Fin ) )
542, 53mpcom 32 1  |-  ( A 
~<  om  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   U.cuni 3843   class class class wbr 4039   Ord word 4407   Oncon0 4408   suc csuc 4410   omcom 4672    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879
This theorem is referenced by:  isfiniteg  7133  unfi2  7142  unifi2  7162  axcclem  8099  dirith2  20693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883
  Copyright terms: Public domain W3C validator