MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Unicode version

Theorem isfinite2 7083
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2  |-  ( A 
~<  om  ->  A  e.  Fin )

Proof of Theorem isfinite2
StepHypRef Expression
1 relsdom 6838 . . 3  |-  Rel  ~<
21brrelex2i 4718 . 2  |-  ( A 
~<  om  ->  om  e.  _V )
3 sdomdom 6857 . . . 4  |-  ( A 
~<  om  ->  A  ~<_  om )
4 domeng 6844 . . . 4  |-  ( om  e.  _V  ->  ( A  ~<_  om  <->  E. y ( A 
~~  y  /\  y  C_ 
om ) ) )
53, 4syl5ib 212 . . 3  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  E. y
( A  ~~  y  /\  y  C_  om )
) )
6 ensym 6878 . . . . . . . . . . 11  |-  ( A 
~~  y  ->  y  ~~  A )
76ad2antrl 711 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~~  A )
8 simpl 445 . . . . . . . . . 10  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~<  om )
9 ensdomtr 6965 . . . . . . . . . 10  |-  ( ( y  ~~  A  /\  A  ~<  om )  ->  y  ~<  om )
107, 8, 9syl2anc 645 . . . . . . . . 9  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  ~<  om )
11 sdomnen 6858 . . . . . . . . 9  |-  ( y 
~<  om  ->  -.  y  ~~  om )
1210, 11syl 17 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  y  ~~  om )
13 simpr 449 . . . . . . . . 9  |-  ( ( A  ~~  y  /\  y  C_  om )  -> 
y  C_  om )
14 unbnn 7081 . . . . . . . . . 10  |-  ( ( om  e.  _V  /\  y  C_  om  /\  A. z  e.  om  E. w  e.  y  z  e.  w )  ->  y  ~~  om )
15143expia 1158 . . . . . . . . 9  |-  ( ( om  e.  _V  /\  y  C_  om )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
162, 13, 15syl2an 465 . . . . . . . 8  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( A. z  e. 
om  E. w  e.  y  z  e.  w  -> 
y  ~~  om )
)
1712, 16mtod 170 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  -.  A. z  e.  om  E. w  e.  y  z  e.  w )
18 rexnal 2529 . . . . . . . . 9  |-  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  <->  -.  A. z  e.  om  E. w  e.  y  z  e.  w
)
19 omsson 4632 . . . . . . . . . . . . 13  |-  om  C_  On
20 sstr 3162 . . . . . . . . . . . . 13  |-  ( ( y  C_  om  /\  om  C_  On )  ->  y  C_  On )
2119, 20mpan2 655 . . . . . . . . . . . 12  |-  ( y 
C_  om  ->  y  C_  On )
22 nnord 4636 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  Ord  z )
23 ssel2 3150 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  C_  On  /\  w  e.  y )  ->  w  e.  On )
24 vex 2766 . . . . . . . . . . . . . . . . . . 19  |-  w  e. 
_V
2524elon 4373 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  On  <->  Ord  w )
2623, 25sylib 190 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  On  /\  w  e.  y )  ->  Ord  w )
27 ordtri1 4397 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  w  /\  Ord  z )  ->  (
w  C_  z  <->  -.  z  e.  w ) )
2826, 27sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  C_  On  /\  w  e.  y )  /\  Ord  z )  ->  ( w  C_  z 
<->  -.  z  e.  w
) )
2928an32s 782 . . . . . . . . . . . . . . 15  |-  ( ( ( y  C_  On  /\ 
Ord  z )  /\  w  e.  y )  ->  ( w  C_  z  <->  -.  z  e.  w ) )
3029ralbidva 2534 . . . . . . . . . . . . . 14  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( A. w  e.  y  w  C_  z  <->  A. w  e.  y  -.  z  e.  w ) )
31 unissb 3831 . . . . . . . . . . . . . 14  |-  ( U. y  C_  z  <->  A. w  e.  y  w  C_  z
)
32 ralnex 2528 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  y  -.  z  e.  w  <->  -.  E. w  e.  y  z  e.  w )
3332bicomi 195 . . . . . . . . . . . . . 14  |-  ( -. 
E. w  e.  y  z  e.  w  <->  A. w  e.  y  -.  z  e.  w )
3430, 31, 333bitr4g 281 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  -.  E. w  e.  y  z  e.  w ) )
35 ordunisssuc 4467 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( U. y  C_  z  <->  y  C_  suc  z ) )
3634, 35bitr3d 248 . . . . . . . . . . . 12  |-  ( ( y  C_  On  /\  Ord  z )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
3721, 22, 36syl2an 465 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  <->  y  C_  suc  z ) )
38 peano2b 4644 . . . . . . . . . . . . . 14  |-  ( z  e.  om  <->  suc  z  e. 
om )
39 ssnnfi 7050 . . . . . . . . . . . . . 14  |-  ( ( suc  z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4038, 39sylanb 460 . . . . . . . . . . . . 13  |-  ( ( z  e.  om  /\  y  C_  suc  z )  ->  y  e.  Fin )
4140ex 425 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4241adantl 454 . . . . . . . . . . 11  |-  ( ( y  C_  om  /\  z  e.  om )  ->  (
y  C_  suc  z  -> 
y  e.  Fin )
)
4337, 42sylbid 208 . . . . . . . . . 10  |-  ( ( y  C_  om  /\  z  e.  om )  ->  ( -.  E. w  e.  y  z  e.  w  -> 
y  e.  Fin )
)
4443rexlimdva 2642 . . . . . . . . 9  |-  ( y 
C_  om  ->  ( E. z  e.  om  -.  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4518, 44syl5bir 211 . . . . . . . 8  |-  ( y 
C_  om  ->  ( -. 
A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin ) )
4645ad2antll 712 . . . . . . 7  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
( -.  A. z  e.  om  E. w  e.  y  z  e.  w  ->  y  e.  Fin )
)
4717, 46mpd 16 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  -> 
y  e.  Fin )
48 simprl 735 . . . . . 6  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  ~~  y )
49 enfii 7048 . . . . . 6  |-  ( ( y  e.  Fin  /\  A  ~~  y )  ->  A  e.  Fin )
5047, 48, 49syl2anc 645 . . . . 5  |-  ( ( A  ~<  om  /\  ( A  ~~  y  /\  y  C_ 
om ) )  ->  A  e.  Fin )
5150ex 425 . . . 4  |-  ( A 
~<  om  ->  ( ( A  ~~  y  /\  y  C_ 
om )  ->  A  e.  Fin ) )
5251exlimdv 1933 . . 3  |-  ( A 
~<  om  ->  ( E. y ( A  ~~  y  /\  y  C_  om )  ->  A  e.  Fin )
)
535, 52sylcom 27 . 2  |-  ( om  e.  _V  ->  ( A  ~<  om  ->  A  e. 
Fin ) )
542, 53mpcom 34 1  |-  ( A 
~<  om  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    e. wcel 1621   A.wral 2518   E.wrex 2519   _Vcvv 2763    C_ wss 3127   U.cuni 3801   class class class wbr 3997   Ord word 4363   Oncon0 4364   suc csuc 4366   omcom 4628    ~~ cen 6828    ~<_ cdom 6829    ~< csdm 6830   Fincfn 6831
This theorem is referenced by:  isfiniteg  7085  unfi2  7094  unifi2  7114  axcclem  8051  dirith2  20639
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835
  Copyright terms: Public domain W3C validator