MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfiniteg Unicode version

Theorem isfiniteg 7002
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isfiniteg  |-  ( om  e.  _V  ->  ( A  e.  Fin  <->  A  ~<  om ) )

Proof of Theorem isfiniteg
StepHypRef Expression
1 isfi 6771 . . 3  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 nnsdomg 7001 . . . . 5  |-  ( ( om  e.  _V  /\  x  e.  om )  ->  x  ~<  om )
3 sdomen1 6890 . . . . 5  |-  ( A 
~~  x  ->  ( A  ~<  om  <->  x  ~<  om )
)
42, 3syl5ibrcom 215 . . . 4  |-  ( ( om  e.  _V  /\  x  e.  om )  ->  ( A  ~~  x  ->  A  ~<  om )
)
54rexlimdva 2629 . . 3  |-  ( om  e.  _V  ->  ( E. x  e.  om  A  ~~  x  ->  A  ~<  om ) )
61, 5syl5bi 210 . 2  |-  ( om  e.  _V  ->  ( A  e.  Fin  ->  A  ~<  om ) )
7 isfinite2 7000 . 2  |-  ( A 
~<  om  ->  A  e.  Fin )
86, 7impbid1 196 1  |-  ( om  e.  _V  ->  ( A  e.  Fin  <->  A  ~<  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   E.wrex 2510   _Vcvv 2727   class class class wbr 3920   omcom 4547    ~~ cen 6746    ~< csdm 6748   Fincfn 6749
This theorem is referenced by:  unfi2  7011  unifi2  7031  isfinite  7237  axcclem  7967
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753
  Copyright terms: Public domain W3C validator