MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 17282
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J  Homeo  K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
StepHypRef Expression
1 cnveq 4762 . . 3  |-  ( f  =  F  ->  `' f  =  `' F
)
21eleq1d 2319 . 2  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
3 hmeofval 17281 . 2  |-  ( J 
Homeo  K )  =  {
f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) }
42, 3elrab2 2862 1  |-  ( F  e.  ( J  Homeo  K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   `'ccnv 4579  (class class class)co 5710    Cn ccn 16786    Homeo chmeo 17276
This theorem is referenced by:  hmeocn  17283  hmeocnvcn  17284  hmeocnv  17285  hmeores  17294  hmeoco  17295  idhmeo  17296  indishmph  17321  cmphaushmeo  17323  ordthmeo  17325  txhmeo  17326  txswaphmeo  17328  pt1hmeo  17329  ptunhmeo  17331  xkohmeo  17338  qtopf1  17339  qtophmeo  17340  grpinvhmeo  17601  tgplacthmeo  17618  cncfcnvcn  18256  icchmeo  18271  cnrehmeo  18283  cnheiborlem  18284  ismtyhmeo  25695
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660  df-top 16468  df-topon 16471  df-cn 16789  df-hmeo 17278
  Copyright terms: Public domain W3C validator