MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishmeo Unicode version

Theorem ishmeo 17779
Description: The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo  |-  ( F  e.  ( J  Homeo  K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )

Proof of Theorem ishmeo
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnveq 5037 . . 3  |-  ( f  =  F  ->  `' f  =  `' F
)
21eleq1d 2501 . 2  |-  ( f  =  F  ->  ( `' f  e.  ( K  Cn  J )  <->  `' F  e.  ( K  Cn  J
) ) )
3 hmeofval 17778 . 2  |-  ( J 
Homeo  K )  =  {
f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) }
42, 3elrab2 3086 1  |-  ( F  e.  ( J  Homeo  K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   `'ccnv 4868  (class class class)co 6072    Cn ccn 17276    Homeo chmeo 17773
This theorem is referenced by:  hmeocn  17780  hmeocnvcn  17781  hmeocnv  17782  hmeores  17791  hmeoco  17792  idhmeo  17793  indishmph  17818  cmphaushmeo  17820  ordthmeo  17822  txhmeo  17823  txswaphmeo  17825  pt1hmeo  17826  ptunhmeo  17828  xkohmeo  17835  qtopf1  17836  qtophmeo  17837  grpinvhmeo  18104  tgplacthmeo  18121  cncfcnvcn  18939  icchmeo  18954  cnrehmeo  18966  cnheiborlem  18967  ismtyhmeo  26451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-map 7011  df-top 16951  df-topon 16954  df-cn 17279  df-hmeo 17775
  Copyright terms: Public domain W3C validator