HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ishst Unicode version

Theorem ishst 22719
Description: Property of a complex Hilbert-space-valued state. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ishst  |-  ( S  e.  CHStates 
<->  ( S : CH --> ~H  /\  ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) )
Distinct variable group:    x, y, S

Proof of Theorem ishst
StepHypRef Expression
1 ax-hilex 21504 . . . 4  |-  ~H  e.  _V
2 chex 21731 . . . 4  |-  CH  e.  _V
31, 2elmap 6729 . . 3  |-  ( S  e.  ( ~H  ^m  CH )  <->  S : CH --> ~H )
43anbi1i 679 . 2  |-  ( ( S  e.  ( ~H 
^m  CH )  /\  (
( normh `  ( S `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )  <->  ( S : CH
--> ~H  /\  ( (
normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
5 fveq1 5422 . . . . . 6  |-  ( f  =  S  ->  (
f `  ~H )  =  ( S `  ~H ) )
65fveq2d 5427 . . . . 5  |-  ( f  =  S  ->  ( normh `  ( f `  ~H ) )  =  (
normh `  ( S `  ~H ) ) )
76eqeq1d 2264 . . . 4  |-  ( f  =  S  ->  (
( normh `  ( f `  ~H ) )  =  1  <->  ( normh `  ( S `  ~H )
)  =  1 ) )
8 fveq1 5422 . . . . . . . . 9  |-  ( f  =  S  ->  (
f `  x )  =  ( S `  x ) )
9 fveq1 5422 . . . . . . . . 9  |-  ( f  =  S  ->  (
f `  y )  =  ( S `  y ) )
108, 9oveq12d 5775 . . . . . . . 8  |-  ( f  =  S  ->  (
( f `  x
)  .ih  ( f `  y ) )  =  ( ( S `  x )  .ih  ( S `  y )
) )
1110eqeq1d 2264 . . . . . . 7  |-  ( f  =  S  ->  (
( ( f `  x )  .ih  (
f `  y )
)  =  0  <->  (
( S `  x
)  .ih  ( S `  y ) )  =  0 ) )
12 fveq1 5422 . . . . . . . 8  |-  ( f  =  S  ->  (
f `  ( x  vH  y ) )  =  ( S `  (
x  vH  y )
) )
138, 9oveq12d 5775 . . . . . . . 8  |-  ( f  =  S  ->  (
( f `  x
)  +h  ( f `
 y ) )  =  ( ( S `
 x )  +h  ( S `  y
) ) )
1412, 13eqeq12d 2270 . . . . . . 7  |-  ( f  =  S  ->  (
( f `  (
x  vH  y )
)  =  ( ( f `  x )  +h  ( f `  y ) )  <->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +h  ( S `
 y ) ) ) )
1511, 14anbi12d 694 . . . . . 6  |-  ( f  =  S  ->  (
( ( ( f `
 x )  .ih  ( f `  y
) )  =  0  /\  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +h  ( f `
 y ) ) )  <->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) )
1615imbi2d 309 . . . . 5  |-  ( f  =  S  ->  (
( x  C_  ( _|_ `  y )  -> 
( ( ( f `
 x )  .ih  ( f `  y
) )  =  0  /\  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +h  ( f `
 y ) ) ) )  <->  ( x  C_  ( _|_ `  y
)  ->  ( (
( S `  x
)  .ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )
17162ralbidv 2556 . . . 4  |-  ( f  =  S  ->  ( A. x  e.  CH  A. y  e.  CH  ( x 
C_  ( _|_ `  y
)  ->  ( (
( f `  x
)  .ih  ( f `  y ) )  =  0  /\  ( f `
 ( x  vH  y ) )  =  ( ( f `  x )  +h  (
f `  y )
) ) )  <->  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )
187, 17anbi12d 694 . . 3  |-  ( f  =  S  ->  (
( ( normh `  (
f `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( f `  x )  .ih  (
f `  y )
)  =  0  /\  ( f `  (
x  vH  y )
)  =  ( ( f `  x )  +h  ( f `  y ) ) ) ) )  <->  ( ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
19 df-hst 22717 . . 3  |-  CHStates  =  {
f  e.  ( ~H 
^m  CH )  |  ( ( normh `  ( f `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( f `  x ) 
.ih  ( f `  y ) )  =  0  /\  ( f `
 ( x  vH  y ) )  =  ( ( f `  x )  +h  (
f `  y )
) ) ) ) }
2018, 19elrab2 2876 . 2  |-  ( S  e.  CHStates 
<->  ( S  e.  ( ~H  ^m  CH )  /\  ( ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
21 3anass 943 . 2  |-  ( ( S : CH --> ~H  /\  ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) )  <-> 
( S : CH --> ~H  /\  ( ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
224, 20, 213bitr4i 270 1  |-  ( S  e.  CHStates 
<->  ( S : CH --> ~H  /\  ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3094   -->wf 4634   ` cfv 4638  (class class class)co 5757    ^m cmap 6705   0cc0 8670   1c1 8671   ~Hchil 21424    +h cva 21425    .ih csp 21427   normhcno 21428   CHcch 21434   _|_cort 21435    vH chj 21438   CHStateschst 21468
This theorem is referenced by:  hstcl  22722  hst1a  22723  hstel2  22724  hstrlem3a  22765
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-hilex 21504
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-map 6707  df-sh 21711  df-ch 21726  df-hst 22717
  Copyright terms: Public domain W3C validator