HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ishst Unicode version

Theorem ishst 22787
Description: Property of a complex Hilbert-space-valued state. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ishst  |-  ( S  e.  CHStates 
<->  ( S : CH --> ~H  /\  ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) )
Distinct variable group:    x, y, S
Dummy variable  f is distinct from all other variables.

Proof of Theorem ishst
StepHypRef Expression
1 ax-hilex 21572 . . . 4  |-  ~H  e.  _V
2 chex 21799 . . . 4  |-  CH  e.  _V
31, 2elmap 6792 . . 3  |-  ( S  e.  ( ~H  ^m  CH )  <->  S : CH --> ~H )
43anbi1i 678 . 2  |-  ( ( S  e.  ( ~H 
^m  CH )  /\  (
( normh `  ( S `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )  <->  ( S : CH
--> ~H  /\  ( (
normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
5 fveq1 5485 . . . . . 6  |-  ( f  =  S  ->  (
f `  ~H )  =  ( S `  ~H ) )
65fveq2d 5490 . . . . 5  |-  ( f  =  S  ->  ( normh `  ( f `  ~H ) )  =  (
normh `  ( S `  ~H ) ) )
76eqeq1d 2293 . . . 4  |-  ( f  =  S  ->  (
( normh `  ( f `  ~H ) )  =  1  <->  ( normh `  ( S `  ~H )
)  =  1 ) )
8 fveq1 5485 . . . . . . . . 9  |-  ( f  =  S  ->  (
f `  x )  =  ( S `  x ) )
9 fveq1 5485 . . . . . . . . 9  |-  ( f  =  S  ->  (
f `  y )  =  ( S `  y ) )
108, 9oveq12d 5838 . . . . . . . 8  |-  ( f  =  S  ->  (
( f `  x
)  .ih  ( f `  y ) )  =  ( ( S `  x )  .ih  ( S `  y )
) )
1110eqeq1d 2293 . . . . . . 7  |-  ( f  =  S  ->  (
( ( f `  x )  .ih  (
f `  y )
)  =  0  <->  (
( S `  x
)  .ih  ( S `  y ) )  =  0 ) )
12 fveq1 5485 . . . . . . . 8  |-  ( f  =  S  ->  (
f `  ( x  vH  y ) )  =  ( S `  (
x  vH  y )
) )
138, 9oveq12d 5838 . . . . . . . 8  |-  ( f  =  S  ->  (
( f `  x
)  +h  ( f `
 y ) )  =  ( ( S `
 x )  +h  ( S `  y
) ) )
1412, 13eqeq12d 2299 . . . . . . 7  |-  ( f  =  S  ->  (
( f `  (
x  vH  y )
)  =  ( ( f `  x )  +h  ( f `  y ) )  <->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +h  ( S `
 y ) ) ) )
1511, 14anbi12d 693 . . . . . 6  |-  ( f  =  S  ->  (
( ( ( f `
 x )  .ih  ( f `  y
) )  =  0  /\  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +h  ( f `
 y ) ) )  <->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) )
1615imbi2d 309 . . . . 5  |-  ( f  =  S  ->  (
( x  C_  ( _|_ `  y )  -> 
( ( ( f `
 x )  .ih  ( f `  y
) )  =  0  /\  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +h  ( f `
 y ) ) ) )  <->  ( x  C_  ( _|_ `  y
)  ->  ( (
( S `  x
)  .ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )
17162ralbidv 2587 . . . 4  |-  ( f  =  S  ->  ( A. x  e.  CH  A. y  e.  CH  ( x 
C_  ( _|_ `  y
)  ->  ( (
( f `  x
)  .ih  ( f `  y ) )  =  0  /\  ( f `
 ( x  vH  y ) )  =  ( ( f `  x )  +h  (
f `  y )
) ) )  <->  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) ) )
187, 17anbi12d 693 . . 3  |-  ( f  =  S  ->  (
( ( normh `  (
f `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( f `  x )  .ih  (
f `  y )
)  =  0  /\  ( f `  (
x  vH  y )
)  =  ( ( f `  x )  +h  ( f `  y ) ) ) ) )  <->  ( ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
19 df-hst 22785 . . 3  |-  CHStates  =  {
f  e.  ( ~H 
^m  CH )  |  ( ( normh `  ( f `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( f `  x ) 
.ih  ( f `  y ) )  =  0  /\  ( f `
 ( x  vH  y ) )  =  ( ( f `  x )  +h  (
f `  y )
) ) ) ) }
2018, 19elrab2 2927 . 2  |-  ( S  e.  CHStates 
<->  ( S  e.  ( ~H  ^m  CH )  /\  ( ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
21 3anass 940 . 2  |-  ( ( S : CH --> ~H  /\  ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( ( ( S `  x ) 
.ih  ( S `  y ) )  =  0  /\  ( S `
 ( x  vH  y ) )  =  ( ( S `  x )  +h  ( S `  y )
) ) ) )  <-> 
( S : CH --> ~H  /\  ( ( normh `  ( S `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) ) )
224, 20, 213bitr4i 270 1  |-  ( S  e.  CHStates 
<->  ( S : CH --> ~H  /\  ( normh `  ( S `  ~H )
)  =  1  /\ 
A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
( ( S `  x )  .ih  ( S `  y )
)  =  0  /\  ( S `  (
x  vH  y )
)  =  ( ( S `  x )  +h  ( S `  y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545    C_ wss 3154   -->wf 5218   ` cfv 5222  (class class class)co 5820    ^m cmap 6768   0cc0 8733   1c1 8734   ~Hchil 21492    +h cva 21493    .ih csp 21495   normhcno 21496   CHcch 21502   _|_cort 21503    vH chj 21506   CHStateschst 21536
This theorem is referenced by:  hstcl  22790  hst1a  22791  hstel2  22792  hstrlem3a  22833
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-hilex 21572
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-map 6770  df-sh 21779  df-ch 21794  df-hst 22785
  Copyright terms: Public domain W3C validator