Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Unicode version

Theorem isidlc 26625
Description: The predicate "is an ideal of the commutative ring  R." (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1  |-  G  =  ( 1st `  R
)
idlval.2  |-  H  =  ( 2nd `  R
)
idlval.3  |-  X  =  ran  G
idlval.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
isidlc  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
Distinct variable groups:    x, R, y, z    z, X    x, I, y, z    x, X
Allowed substitution hints:    G( x, y, z)    H( x, y, z)    X( y)    Z( x, y, z)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 26610 . . 3  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
2 idlval.1 . . . 4  |-  G  =  ( 1st `  R
)
3 idlval.2 . . . 4  |-  H  =  ( 2nd `  R
)
4 idlval.3 . . . 4  |-  X  =  ran  G
5 idlval.4 . . . 4  |-  Z  =  (GId `  G )
62, 3, 4, 5isidl 26624 . . 3  |-  ( R  e.  RingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) ) )
71, 6syl 16 . 2  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) ) )
8 ssel2 3343 . . . . . . . 8  |-  ( ( I  C_  X  /\  x  e.  I )  ->  x  e.  X )
92, 3, 4crngocom 26611 . . . . . . . . . . . . . . 15  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
x H z )  =  ( z H x ) )
109eleq1d 2502 . . . . . . . . . . . . . 14  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
( x H z )  e.  I  <->  ( z H x )  e.  I ) )
1110biimprd 215 . . . . . . . . . . . . 13  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
( z H x )  e.  I  -> 
( x H z )  e.  I ) )
12113expa 1153 . . . . . . . . . . . 12  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( z H x )  e.  I  -> 
( x H z )  e.  I ) )
1312pm4.71d 616 . . . . . . . . . . 11  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( z H x )  e.  I  <->  ( (
z H x )  e.  I  /\  (
x H z )  e.  I ) ) )
1413bicomd 193 . . . . . . . . . 10  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( ( z H x )  e.  I  /\  ( x H z )  e.  I )  <-> 
( z H x )  e.  I ) )
1514ralbidva 2721 . . . . . . . . 9  |-  ( ( R  e. CRingOps  /\  x  e.  X )  ->  ( A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I )  <->  A. z  e.  X  ( z H x )  e.  I ) )
1615anbi2d 685 . . . . . . . 8  |-  ( ( R  e. CRingOps  /\  x  e.  X )  ->  (
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
178, 16sylan2 461 . . . . . . 7  |-  ( ( R  e. CRingOps  /\  (
I  C_  X  /\  x  e.  I )
)  ->  ( ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
1817anassrs 630 . . . . . 6  |-  ( ( ( R  e. CRingOps  /\  I  C_  X )  /\  x  e.  I )  ->  (
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
1918ralbidva 2721 . . . . 5  |-  ( ( R  e. CRingOps  /\  I  C_  X )  ->  ( A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
2019adantrr 698 . . . 4  |-  ( ( R  e. CRingOps  /\  (
I  C_  X  /\  Z  e.  I )
)  ->  ( A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
2120pm5.32da 623 . . 3  |-  ( R  e. CRingOps  ->  ( ( ( I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( (
I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
22 df-3an 938 . . 3  |-  ( ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( (
I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) )
23 df-3an 938 . . 3  |-  ( ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) )  <-> 
( ( I  C_  X  /\  Z  e.  I
)  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
z H x )  e.  I ) ) )
2421, 22, 233bitr4g 280 . 2  |-  ( R  e. CRingOps  ->  ( ( I 
C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
z H x )  e.  I ) ) ) )
257, 24bitrd 245 1  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705    C_ wss 3320   ran crn 4879   ` cfv 5454  (class class class)co 6081   1stc1st 6347   2ndc2nd 6348  GIdcgi 21775   RingOpscrngo 21963  CRingOpsccring 26605   Idlcidl 26617
This theorem is referenced by:  prnc  26677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-1st 6349  df-2nd 6350  df-rngo 21964  df-com2 21999  df-crngo 26606  df-idl 26620
  Copyright terms: Public domain W3C validator