MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Unicode version

Theorem islbs3 16232
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v  |-  V  =  ( Base `  W
)
islbs2.j  |-  J  =  (LBasis `  W )
islbs2.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
islbs3  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) ) )
Distinct variable groups:    B, s    N, s    V, s    W, s    J, s

Proof of Theorem islbs3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5  |-  V  =  ( Base `  W
)
2 islbs2.j . . . . 5  |-  J  =  (LBasis `  W )
31, 2lbsss 16154 . . . 4  |-  ( B  e.  J  ->  B  C_  V )
43adantl 454 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  B  C_  V )
5 islbs2.n . . . . 5  |-  N  =  ( LSpan `  W )
61, 2, 5lbssp 16156 . . . 4  |-  ( B  e.  J  ->  ( N `  B )  =  V )
76adantl 454 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  ( N `  B )  =  V )
8 lveclmod 16183 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
983ad2ant1 979 . . . . . . 7  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  W  e.  LMod )
10 pssss 3444 . . . . . . . . 9  |-  ( s 
C.  B  ->  s  C_  B )
1110, 3sylan9ssr 3364 . . . . . . . 8  |-  ( ( B  e.  J  /\  s  C.  B )  -> 
s  C_  V )
12113adant1 976 . . . . . . 7  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  s  C_  V )
131, 5lspssv 16064 . . . . . . 7  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  ( N `  s )  C_  V )
149, 12, 13syl2anc 644 . . . . . 6  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  C_  V )
15 eqid 2438 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
1615lvecdrng 16182 . . . . . . . . 9  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
17 eqid 2438 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
18 eqid 2438 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
1917, 18drngunz 15855 . . . . . . . . 9  |-  ( (Scalar `  W )  e.  DivRing  -> 
( 1r `  (Scalar `  W ) )  =/=  ( 0g `  (Scalar `  W ) ) )
2016, 19syl 16 . . . . . . . 8  |-  ( W  e.  LVec  ->  ( 1r
`  (Scalar `  W )
)  =/=  ( 0g
`  (Scalar `  W )
) )
218, 20jca 520 . . . . . . 7  |-  ( W  e.  LVec  ->  ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  =/=  ( 0g `  (Scalar `  W
) ) ) )
222, 5, 15, 18, 17, 1lbspss 16159 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W ) )  =/=  ( 0g `  (Scalar `  W ) ) )  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  =/=  V
)
2321, 22syl3an1 1218 . . . . . 6  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  =/=  V )
24 df-pss 3338 . . . . . 6  |-  ( ( N `  s ) 
C.  V  <->  ( ( N `  s )  C_  V  /\  ( N `
 s )  =/= 
V ) )
2514, 23, 24sylanbrc 647 . . . . 5  |-  ( ( W  e.  LVec  /\  B  e.  J  /\  s  C.  B )  ->  ( N `  s )  C.  V )
26253expia 1156 . . . 4  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  (
s  C.  B  ->  ( N `  s ) 
C.  V ) )
2726alrimiv 1642 . . 3  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
)
284, 7, 273jca 1135 . 2  |-  ( ( W  e.  LVec  /\  B  e.  J )  ->  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )
29 simpr1 964 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  B  C_  V )
30 simpr2 965 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  ( N `  B )  =  V )
31 simplr1 1000 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  B  C_  V )
3231ssdifssd 3487 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C_  V )
33 fvex 5745 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
341, 33eqeltri 2508 . . . . . . . 8  |-  V  e. 
_V
35 ssexg 4352 . . . . . . . 8  |-  ( ( ( B  \  {
x } )  C_  V  /\  V  e.  _V )  ->  ( B  \  { x } )  e.  _V )
3632, 34, 35sylancl 645 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  e. 
_V )
37 simplr3 1002 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  A. s ( s 
C.  B  ->  ( N `  s )  C.  V ) )
38 difssd 3477 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C_  B )
39 simpr 449 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  x  e.  B )
40 neldifsn 3931 . . . . . . . . . 10  |-  -.  x  e.  ( B  \  {
x } )
41 nelne1 2695 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  -.  x  e.  ( B  \  { x }
) )  ->  B  =/=  ( B  \  {
x } ) )
4239, 40, 41sylancl 645 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  B  =/=  ( B 
\  { x }
) )
4342necomd 2689 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  =/= 
B )
44 df-pss 3338 . . . . . . . 8  |-  ( ( B  \  { x } )  C.  B  <->  ( ( B  \  {
x } )  C_  B  /\  ( B  \  { x } )  =/=  B ) )
4538, 43, 44sylanbrc 647 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( B  \  {
x } )  C.  B )
46 psseq1 3436 . . . . . . . . 9  |-  ( s  =  ( B  \  { x } )  ->  ( s  C.  B 
<->  ( B  \  {
x } )  C.  B ) )
47 fveq2 5731 . . . . . . . . . 10  |-  ( s  =  ( B  \  { x } )  ->  ( N `  s )  =  ( N `  ( B 
\  { x }
) ) )
4847psseq1d 3441 . . . . . . . . 9  |-  ( s  =  ( B  \  { x } )  ->  ( ( N `
 s )  C.  V 
<->  ( N `  ( B  \  { x }
) )  C.  V
) )
4946, 48imbi12d 313 . . . . . . . 8  |-  ( s  =  ( B  \  { x } )  ->  ( ( s 
C.  B  ->  ( N `  s )  C.  V )  <->  ( ( B  \  { x }
)  C.  B  ->  ( N `  ( B 
\  { x }
) )  C.  V
) ) )
5049spcgv 3038 . . . . . . 7  |-  ( ( B  \  { x } )  e.  _V  ->  ( A. s ( s  C.  B  -> 
( N `  s
)  C.  V )  ->  ( ( B  \  { x } ) 
C.  B  ->  ( N `  ( B  \  { x } ) )  C.  V ) ) )
5136, 37, 45, 50syl3c 60 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( N `  ( B  \  { x }
) )  C.  V
)
52 dfpss3 3435 . . . . . . 7  |-  ( ( N `  ( B 
\  { x }
) )  C.  V  <->  ( ( N `  ( B  \  { x }
) )  C_  V  /\  -.  V  C_  ( N `  ( B  \  { x } ) ) ) )
5352simprbi 452 . . . . . 6  |-  ( ( N `  ( B 
\  { x }
) )  C.  V  ->  -.  V  C_  ( N `  ( B  \  { x } ) ) )
5451, 53syl 16 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  -.  V  C_  ( N `  ( B  \  { x } ) ) )
55 simplr2 1001 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  B
)  =  V )
568ad2antrr 708 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  W  e.  LMod )
5732adantrr 699 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( B  \  {
x } )  C_  V )
58 eqid 2438 . . . . . . . . . 10  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
591, 58, 5lspcl 16057 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V )  ->  ( N `  ( B  \  { x }
) )  e.  (
LSubSp `  W ) )
6056, 57, 59syl2anc 644 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  ( B  \  { x }
) )  e.  (
LSubSp `  W ) )
61 ssun1 3512 . . . . . . . . . 10  |-  B  C_  ( B  u.  { x } )
62 undif1 3705 . . . . . . . . . 10  |-  ( ( B  \  { x } )  u.  {
x } )  =  ( B  u.  {
x } )
6361, 62sseqtr4i 3383 . . . . . . . . 9  |-  B  C_  ( ( B  \  { x } )  u.  { x }
)
641, 5lspssid 16066 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V )  ->  ( B  \  {
x } )  C_  ( N `  ( B 
\  { x }
) ) )
6556, 57, 64syl2anc 644 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( B  \  {
x } )  C_  ( N `  ( B 
\  { x }
) ) )
66 simprr 735 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  x  e.  ( N `  ( B  \  {
x } ) ) )
6766snssd 3945 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  { x }  C_  ( N `  ( B 
\  { x }
) ) )
6865, 67unssd 3525 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( ( B  \  { x } )  u.  { x }
)  C_  ( N `  ( B  \  {
x } ) ) )
6963, 68syl5ss 3361 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  B  C_  ( N `  ( B  \  { x } ) ) )
7058, 5lspssp 16069 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  ( B  \  { x } ) )  e.  ( LSubSp `  W )  /\  B  C_  ( N `  ( B  \  { x }
) ) )  -> 
( N `  B
)  C_  ( N `  ( B  \  {
x } ) ) )
7156, 60, 69, 70syl3anc 1185 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  -> 
( N `  B
)  C_  ( N `  ( B  \  {
x } ) ) )
7255, 71eqsstr3d 3385 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  ( x  e.  B  /\  x  e.  ( N `  ( B  \  { x } ) ) ) )  ->  V  C_  ( N `  ( B  \  { x } ) ) )
7372expr 600 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  ( x  e.  ( N `  ( B 
\  { x }
) )  ->  V  C_  ( N `  ( B  \  { x }
) ) ) )
7454, 73mtod 171 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B
)  =  V  /\  A. s ( s  C.  B  ->  ( N `  s )  C.  V
) ) )  /\  x  e.  B )  ->  -.  x  e.  ( N `  ( B 
\  { x }
) ) )
7574ralrimiva 2791 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) )
761, 2, 5islbs2 16231 . . . 4  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) ) ) )
7776adantr 453 . . 3  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  -.  x  e.  ( N `  ( B  \  { x }
) ) ) ) )
7829, 30, 75, 77mpbir3and 1138 . 2  |-  ( ( W  e.  LVec  /\  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) )  ->  B  e.  J )
7928, 78impbida 807 1  |-  ( W  e.  LVec  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. s
( s  C.  B  ->  ( N `  s
)  C.  V )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958    \ cdif 3319    u. cun 3320    C_ wss 3322    C. wpss 3323   {csn 3816   ` cfv 5457   Basecbs 13474  Scalarcsca 13537   0gc0g 13728   1rcur 15667   DivRingcdr 15840   LModclmod 15955   LSubSpclss 16013   LSpanclspn 16052  LBasisclbs 16151   LVecclvec 16179
This theorem is referenced by:  obslbs  16962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mgp 15654  df-rng 15668  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-drng 15842  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lbs 16152  df-lvec 16180
  Copyright terms: Public domain W3C validator