Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Unicode version

Theorem isldil 30746
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b  |-  B  =  ( Base `  K
)
ldilset.l  |-  .<_  =  ( le `  K )
ldilset.h  |-  H  =  ( LHyp `  K
)
ldilset.i  |-  I  =  ( LAut `  K
)
ldilset.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
isldil  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) ) )
Distinct variable groups:    x, B    x, K    x, W    x, F
Allowed substitution hints:    C( x)    D( x)    H( x)    I( x)    .<_ ( x)

Proof of Theorem isldil
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4  |-  B  =  ( Base `  K
)
2 ldilset.l . . . 4  |-  .<_  =  ( le `  K )
3 ldilset.h . . . 4  |-  H  =  ( LHyp `  K
)
4 ldilset.i . . . 4  |-  I  =  ( LAut `  K
)
5 ldilset.d . . . 4  |-  D  =  ( ( LDil `  K
) `  W )
61, 2, 3, 4, 5ldilset 30745 . . 3  |-  ( ( K  e.  C  /\  W  e.  H )  ->  D  =  { f  e.  I  |  A. x  e.  B  (
x  .<_  W  ->  (
f `  x )  =  x ) } )
76eleq2d 2502 . 2  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  F  e.  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  ->  ( f `  x )  =  x ) } ) )
8 fveq1 5718 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
98eqeq1d 2443 . . . . 5  |-  ( f  =  F  ->  (
( f `  x
)  =  x  <->  ( F `  x )  =  x ) )
109imbi2d 308 . . . 4  |-  ( f  =  F  ->  (
( x  .<_  W  -> 
( f `  x
)  =  x )  <-> 
( x  .<_  W  -> 
( F `  x
)  =  x ) ) )
1110ralbidv 2717 . . 3  |-  ( f  =  F  ->  ( A. x  e.  B  ( x  .<_  W  -> 
( f `  x
)  =  x )  <->  A. x  e.  B  ( x  .<_  W  -> 
( F `  x
)  =  x ) ) )
1211elrab 3084 . 2  |-  ( F  e.  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  ->  ( f `  x )  =  x ) }  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) )
137, 12syl6bb 253 1  |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W  ->  ( F `  x )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   class class class wbr 4204   ` cfv 5445   Basecbs 13457   lecple 13524   LHypclh 30620   LAutclaut 30621   LDilcldil 30736
This theorem is referenced by:  ldillaut  30747  ldilval  30749  idldil  30750  ldilcnv  30751  ldilco  30752  cdleme50ldil  31184
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ldil 30740
  Copyright terms: Public domain W3C validator