Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Unicode version

Theorem isline 30473
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l  |-  .<_  =  ( le `  K )
isline.j  |-  .\/  =  ( join `  K )
isline.a  |-  A  =  ( Atoms `  K )
isline.n  |-  N  =  ( Lines `  K )
Assertion
Ref Expression
isline  |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) ) )
Distinct variable groups:    q, p, r, A    K, p, q, r    X, q, r
Allowed substitution hints:    D( r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)    N( r, q, p)    X( p)

Proof of Theorem isline
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4  |-  .<_  =  ( le `  K )
2 isline.j . . . 4  |-  .\/  =  ( join `  K )
3 isline.a . . . 4  |-  A  =  ( Atoms `  K )
4 isline.n . . . 4  |-  N  =  ( Lines `  K )
51, 2, 3, 4lineset 30472 . . 3  |-  ( K  e.  D  ->  N  =  { x  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  x  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
65eleq2d 2502 . 2  |-  ( K  e.  D  ->  ( X  e.  N  <->  X  e.  { x  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) } ) )
7 fvex 5734 . . . . . . . . 9  |-  ( Atoms `  K )  e.  _V
83, 7eqeltri 2505 . . . . . . . 8  |-  A  e. 
_V
98rabex 4346 . . . . . . 7  |-  { p  e.  A  |  p  .<_  ( q  .\/  r
) }  e.  _V
10 eleq1 2495 . . . . . . 7  |-  ( X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) }  ->  ( X  e.  _V  <->  { p  e.  A  |  p  .<_  ( q 
.\/  r ) }  e.  _V ) )
119, 10mpbiri 225 . . . . . 6  |-  ( X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) }  ->  X  e.  _V )
1211adantl 453 . . . . 5  |-  ( ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  ->  X  e.  _V )
1312a1i 11 . . . 4  |-  ( ( q  e.  A  /\  r  e.  A )  ->  ( ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } )  ->  X  e.  _V ) )
1413rexlimivv 2827 . . 3  |-  ( E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  ->  X  e.  _V )
15 eqeq1 2441 . . . . 5  |-  ( x  =  X  ->  (
x  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) }  <->  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) )
1615anbi2d 685 . . . 4  |-  ( x  =  X  ->  (
( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } )  <-> 
( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
17162rexbidv 2740 . . 3  |-  ( x  =  X  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } )  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
1814, 17elab3 3081 . 2  |-  ( X  e.  { x  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  x  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) }  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) )
196, 18syl6bb 253 1  |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   E.wrex 2698   {crab 2701   _Vcvv 2948   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   lecple 13528   joincjn 14393   Atomscatm 29998   Linesclines 30228
This theorem is referenced by:  islinei  30474  linepsubN  30486  isline2  30508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-lines 30235
  Copyright terms: Public domain W3C validator