MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismndo1 Structured version   Unicode version

Theorem ismndo1 21932
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo1.1  |-  X  =  dom  dom  G
Assertion
Ref Expression
ismndo1  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Distinct variable groups:    x, G, y, z    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem ismndo1
StepHypRef Expression
1 ismndo1.1 . . 3  |-  X  =  dom  dom  G
21ismndo 21931 . 2  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G  e.  SemiGrp 
/\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
31smgrpmgm 21923 . . . . 5  |-  ( G  e.  SemiGrp  ->  G : ( X  X.  X ) --> X )
43ad2antrl 709 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  G : ( X  X.  X ) --> X )
51smgrpass 21924 . . . . 5  |-  ( G  e.  SemiGrp  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
65ad2antrl 709 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) )
7 simprr 734 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) )
84, 6, 73jca 1134 . . 3  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )
9 3simpa 954 . . . . . 6  |-  ( ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )  -> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
101issmgrp 21922 . . . . . 6  |-  ( G  e.  A  ->  ( G  e.  SemiGrp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) ) ) ) )
119, 10syl5ibr 213 . . . . 5  |-  ( G  e.  A  ->  (
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) )  ->  G  e.  SemiGrp ) )
1211imp 419 . . . 4  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  G  e.  SemiGrp )
13 simpr3 965 . . . 4  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )
1412, 13jca 519 . . 3  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  ( G  e.  SemiGrp 
/\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )
158, 14impbida 806 . 2  |-  ( G  e.  A  ->  (
( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) )  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
162, 15bitrd 245 1  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    X. cxp 4876   dom cdm 4878   -->wf 5450  (class class class)co 6081   SemiGrpcsem 21918  MndOpcmndo 21925
This theorem is referenced by:  ismndo2  21933  rngomndo  22009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-ass 21901  df-exid 21903  df-mgm 21907  df-sgr 21919  df-mndo 21926
  Copyright terms: Public domain W3C validator