Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismona Unicode version

Theorem ismona 25912
Description: Monomorphisms of a category. (Contributed by FL, 5-Dec-2007.)
Hypotheses
Ref Expression
ismona.1  |-  M  =  dom  ( dom_ `  T
)
ismona.2  |-  D  =  ( dom_ `  T
)
ismona.3  |-  C  =  ( cod_ `  T
)
ismona.4  |-  R  =  ( o_ `  T
)
Assertion
Ref Expression
ismona  |-  ( T  e.  Cat OLD  ->  ( MonoOLD  `  T )  =  {
f  e.  M  |  A. g  e.  M  A. h  e.  M  ( ( ( D `
 g )  =  ( D `  h
)  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  ->  ( (
f R g )  =  ( f R h )  ->  g  =  h ) ) } )
Distinct variable groups:    f, M, g, h    T, f, g, h
Allowed substitution hints:    C( f, g, h)    D( f, g, h)    R( f, g, h)

Proof of Theorem ismona
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . 5  |-  ( x  =  T  ->  ( dom_ `  x )  =  ( dom_ `  T
) )
21dmeqd 4897 . . . 4  |-  ( x  =  T  ->  dom  ( dom_ `  x )  =  dom  ( dom_ `  T
) )
3 ismona.1 . . . 4  |-  M  =  dom  ( dom_ `  T
)
42, 3syl6eqr 2346 . . 3  |-  ( x  =  T  ->  dom  ( dom_ `  x )  =  M )
54raleqdv 2755 . . . . 5  |-  ( x  =  T  ->  ( A. h  e.  dom  ( dom_ `  x )
( ( ( (
dom_ `  x ) `  g )  =  ( ( dom_ `  x
) `  h )  /\  ( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  /\  ( ( cod_ `  x ) `  h )  =  ( ( dom_ `  x
) `  f )
)  ->  ( (
f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h ) )  <->  A. h  e.  M  ( (
( ( dom_ `  x
) `  g )  =  ( ( dom_ `  x ) `  h
)  /\  ( ( cod_ `  x ) `  g )  =  ( ( dom_ `  x
) `  f )  /\  ( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
) )  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  -> 
g  =  h ) ) ) )
64, 5raleqbidv 2761 . . . 4  |-  ( x  =  T  ->  ( A. g  e.  dom  ( dom_ `  x ) A. h  e.  dom  ( dom_ `  x )
( ( ( (
dom_ `  x ) `  g )  =  ( ( dom_ `  x
) `  h )  /\  ( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  /\  ( ( cod_ `  x ) `  h )  =  ( ( dom_ `  x
) `  f )
)  ->  ( (
f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h ) )  <->  A. g  e.  M  A. h  e.  M  ( (
( ( dom_ `  x
) `  g )  =  ( ( dom_ `  x ) `  h
)  /\  ( ( cod_ `  x ) `  g )  =  ( ( dom_ `  x
) `  f )  /\  ( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
) )  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  -> 
g  =  h ) ) ) )
71fveq1d 5543 . . . . . . . . 9  |-  ( x  =  T  ->  (
( dom_ `  x ) `  g )  =  ( ( dom_ `  T
) `  g )
)
8 ismona.2 . . . . . . . . . . 11  |-  D  =  ( dom_ `  T
)
98eqcomi 2300 . . . . . . . . . 10  |-  ( dom_ `  T )  =  D
109fveq1i 5542 . . . . . . . . 9  |-  ( (
dom_ `  T ) `  g )  =  ( D `  g )
117, 10syl6eq 2344 . . . . . . . 8  |-  ( x  =  T  ->  (
( dom_ `  x ) `  g )  =  ( D `  g ) )
121fveq1d 5543 . . . . . . . . 9  |-  ( x  =  T  ->  (
( dom_ `  x ) `  h )  =  ( ( dom_ `  T
) `  h )
)
139fveq1i 5542 . . . . . . . . 9  |-  ( (
dom_ `  T ) `  h )  =  ( D `  h )
1412, 13syl6eq 2344 . . . . . . . 8  |-  ( x  =  T  ->  (
( dom_ `  x ) `  h )  =  ( D `  h ) )
1511, 14eqeq12d 2310 . . . . . . 7  |-  ( x  =  T  ->  (
( ( dom_ `  x
) `  g )  =  ( ( dom_ `  x ) `  h
)  <->  ( D `  g )  =  ( D `  h ) ) )
16 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  T  ->  ( cod_ `  x )  =  ( cod_ `  T
) )
1716fveq1d 5543 . . . . . . . . 9  |-  ( x  =  T  ->  (
( cod_ `  x ) `  g )  =  ( ( cod_ `  T
) `  g )
)
18 ismona.3 . . . . . . . . . . 11  |-  C  =  ( cod_ `  T
)
1918eqcomi 2300 . . . . . . . . . 10  |-  ( cod_ `  T )  =  C
2019fveq1i 5542 . . . . . . . . 9  |-  ( (
cod_ `  T ) `  g )  =  ( C `  g )
2117, 20syl6eq 2344 . . . . . . . 8  |-  ( x  =  T  ->  (
( cod_ `  x ) `  g )  =  ( C `  g ) )
221fveq1d 5543 . . . . . . . . 9  |-  ( x  =  T  ->  (
( dom_ `  x ) `  f )  =  ( ( dom_ `  T
) `  f )
)
239fveq1i 5542 . . . . . . . . 9  |-  ( (
dom_ `  T ) `  f )  =  ( D `  f )
2422, 23syl6eq 2344 . . . . . . . 8  |-  ( x  =  T  ->  (
( dom_ `  x ) `  f )  =  ( D `  f ) )
2521, 24eqeq12d 2310 . . . . . . 7  |-  ( x  =  T  ->  (
( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  <->  ( C `  g )  =  ( D `  f ) ) )
2616fveq1d 5543 . . . . . . . . 9  |-  ( x  =  T  ->  (
( cod_ `  x ) `  h )  =  ( ( cod_ `  T
) `  h )
)
2719fveq1i 5542 . . . . . . . . 9  |-  ( (
cod_ `  T ) `  h )  =  ( C `  h )
2826, 27syl6eq 2344 . . . . . . . 8  |-  ( x  =  T  ->  (
( cod_ `  x ) `  h )  =  ( C `  h ) )
2928, 24eqeq12d 2310 . . . . . . 7  |-  ( x  =  T  ->  (
( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
)  <->  ( C `  h )  =  ( D `  f ) ) )
3015, 25, 293anbi123d 1252 . . . . . 6  |-  ( x  =  T  ->  (
( ( ( dom_ `  x ) `  g
)  =  ( (
dom_ `  x ) `  h )  /\  (
( cod_ `  x ) `  g )  =  ( ( dom_ `  x
) `  f )  /\  ( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
) )  <->  ( ( D `  g )  =  ( D `  h )  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) ) ) )
31 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  T  ->  (
o_ `  x )  =  ( o_ `  T ) )
3231oveqd 5891 . . . . . . . . 9  |-  ( x  =  T  ->  (
f ( o_ `  x ) g )  =  ( f ( o_ `  T ) g ) )
3331oveqd 5891 . . . . . . . . 9  |-  ( x  =  T  ->  (
f ( o_ `  x ) h )  =  ( f ( o_ `  T ) h ) )
3432, 33eqeq12d 2310 . . . . . . . 8  |-  ( x  =  T  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  <->  ( f
( o_ `  T
) g )  =  ( f ( o_
`  T ) h ) ) )
35 ismona.4 . . . . . . . . . 10  |-  R  =  ( o_ `  T
)
36 oveq 5880 . . . . . . . . . . 11  |-  ( ( o_ `  T )  =  R  ->  (
f ( o_ `  T ) g )  =  ( f R g ) )
3736eqcoms 2299 . . . . . . . . . 10  |-  ( R  =  ( o_ `  T )  ->  (
f ( o_ `  T ) g )  =  ( f R g ) )
3835, 37ax-mp 8 . . . . . . . . 9  |-  ( f ( o_ `  T
) g )  =  ( f R g )
39 oveq 5880 . . . . . . . . . . 11  |-  ( ( o_ `  T )  =  R  ->  (
f ( o_ `  T ) h )  =  ( f R h ) )
4039eqcoms 2299 . . . . . . . . . 10  |-  ( R  =  ( o_ `  T )  ->  (
f ( o_ `  T ) h )  =  ( f R h ) )
4135, 40ax-mp 8 . . . . . . . . 9  |-  ( f ( o_ `  T
) h )  =  ( f R h )
4238, 41eqeq12i 2309 . . . . . . . 8  |-  ( ( f ( o_ `  T ) g )  =  ( f ( o_ `  T ) h )  <->  ( f R g )  =  ( f R h ) )
4334, 42syl6bb 252 . . . . . . 7  |-  ( x  =  T  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  <->  ( f R g )  =  ( f R h ) ) )
4443imbi1d 308 . . . . . 6  |-  ( x  =  T  ->  (
( ( f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h )  <->  ( ( f R g )  =  ( f R h )  ->  g  =  h ) ) )
4530, 44imbi12d 311 . . . . 5  |-  ( x  =  T  ->  (
( ( ( (
dom_ `  x ) `  g )  =  ( ( dom_ `  x
) `  h )  /\  ( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  /\  ( ( cod_ `  x ) `  h )  =  ( ( dom_ `  x
) `  f )
)  ->  ( (
f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h ) )  <->  ( (
( D `  g
)  =  ( D `
 h )  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  -> 
( ( f R g )  =  ( f R h )  ->  g  =  h ) ) ) )
46452ralbidv 2598 . . . 4  |-  ( x  =  T  ->  ( A. g  e.  M  A. h  e.  M  ( ( ( (
dom_ `  x ) `  g )  =  ( ( dom_ `  x
) `  h )  /\  ( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  /\  ( ( cod_ `  x ) `  h )  =  ( ( dom_ `  x
) `  f )
)  ->  ( (
f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h ) )  <->  A. g  e.  M  A. h  e.  M  ( (
( D `  g
)  =  ( D `
 h )  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  -> 
( ( f R g )  =  ( f R h )  ->  g  =  h ) ) ) )
476, 46bitrd 244 . . 3  |-  ( x  =  T  ->  ( A. g  e.  dom  ( dom_ `  x ) A. h  e.  dom  ( dom_ `  x )
( ( ( (
dom_ `  x ) `  g )  =  ( ( dom_ `  x
) `  h )  /\  ( ( cod_ `  x
) `  g )  =  ( ( dom_ `  x ) `  f
)  /\  ( ( cod_ `  x ) `  h )  =  ( ( dom_ `  x
) `  f )
)  ->  ( (
f ( o_ `  x ) g )  =  ( f ( o_ `  x ) h )  ->  g  =  h ) )  <->  A. g  e.  M  A. h  e.  M  ( (
( D `  g
)  =  ( D `
 h )  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  -> 
( ( f R g )  =  ( f R h )  ->  g  =  h ) ) ) )
484, 47rabeqbidv 2796 . 2  |-  ( x  =  T  ->  { f  e.  dom  ( dom_ `  x )  |  A. g  e.  dom  ( dom_ `  x ) A. h  e.  dom  ( dom_ `  x
) ( ( ( ( dom_ `  x
) `  g )  =  ( ( dom_ `  x ) `  h
)  /\  ( ( cod_ `  x ) `  g )  =  ( ( dom_ `  x
) `  f )  /\  ( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
) )  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  -> 
g  =  h ) ) }  =  {
f  e.  M  |  A. g  e.  M  A. h  e.  M  ( ( ( D `
 g )  =  ( D `  h
)  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  ->  ( (
f R g )  =  ( f R h )  ->  g  =  h ) ) } )
49 df-monOLD 25909 . 2  |- MonoOLD  =  ( x  e.  Cat OLD  |->  { f  e.  dom  ( dom_ `  x )  |  A. g  e.  dom  ( dom_ `  x ) A. h  e.  dom  ( dom_ `  x
) ( ( ( ( dom_ `  x
) `  g )  =  ( ( dom_ `  x ) `  h
)  /\  ( ( cod_ `  x ) `  g )  =  ( ( dom_ `  x
) `  f )  /\  ( ( cod_ `  x
) `  h )  =  ( ( dom_ `  x ) `  f
) )  ->  (
( f ( o_
`  x ) g )  =  ( f ( o_ `  x
) h )  -> 
g  =  h ) ) } )
50 fvex 5555 . . . . 5  |-  ( dom_ `  T )  e.  _V
5150dmex 4957 . . . 4  |-  dom  ( dom_ `  T )  e. 
_V
523, 51eqeltri 2366 . . 3  |-  M  e. 
_V
5352rabex 4181 . 2  |-  { f  e.  M  |  A. g  e.  M  A. h  e.  M  (
( ( D `  g )  =  ( D `  h )  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  ->  ( (
f R g )  =  ( f R h )  ->  g  =  h ) ) }  e.  _V
5448, 49, 53fvmpt 5618 1  |-  ( T  e.  Cat OLD  ->  ( MonoOLD  `  T )  =  {
f  e.  M  |  A. g  e.  M  A. h  e.  M  ( ( ( D `
 g )  =  ( D `  h
)  /\  ( C `  g )  =  ( D `  f )  /\  ( C `  h )  =  ( D `  f ) )  ->  ( (
f R g )  =  ( f R h )  ->  g  =  h ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801   dom cdm 4705   ` cfv 5271  (class class class)co 5874   dom_cdom_ 25815   cod_ccod_ 25816   o_co_ 25818    Cat
OLD ccatOLD 25855   MonoOLD cmonOLD 25907
This theorem is referenced by:  ismonb  25913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-monOLD 25909
  Copyright terms: Public domain W3C validator