Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Unicode version

Theorem ismrcd1 26743
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 13834), isotone (satisfies mrcss 13833), and idempotent (satisfies mrcidm 13836) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 26744 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b  |-  ( ph  ->  B  e.  V )
ismrcd.f  |-  ( ph  ->  F : ~P B --> ~P B )
ismrcd.e  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
ismrcd.m  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)
ismrcd.i  |-  ( (
ph  /\  x  C_  B
)  ->  ( F `  ( F `  x
) )  =  ( F `  x ) )
Assertion
Ref Expression
ismrcd1  |-  ( ph  ->  dom  ( F  i^i  _I  )  e.  (Moore `  B ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, F, y    x, V, y

Proof of Theorem ismrcd1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inss1 3553 . . . 4  |-  ( F  i^i  _I  )  C_  F
2 dmss 5061 . . . 4  |-  ( ( F  i^i  _I  )  C_  F  ->  dom  ( F  i^i  _I  )  C_  dom  F )
31, 2ax-mp 8 . . 3  |-  dom  ( F  i^i  _I  )  C_  dom  F
4 ismrcd.f . . . 4  |-  ( ph  ->  F : ~P B --> ~P B )
5 fdm 5587 . . . 4  |-  ( F : ~P B --> ~P B  ->  dom  F  =  ~P B )
64, 5syl 16 . . 3  |-  ( ph  ->  dom  F  =  ~P B )
73, 6syl5sseq 3388 . 2  |-  ( ph  ->  dom  ( F  i^i  _I  )  C_  ~P B
)
8 ssid 3359 . . . . . . 7  |-  B  C_  B
9 ismrcd.b . . . . . . . 8  |-  ( ph  ->  B  e.  V )
10 elpwg 3798 . . . . . . . 8  |-  ( B  e.  V  ->  ( B  e.  ~P B  <->  B 
C_  B ) )
119, 10syl 16 . . . . . . 7  |-  ( ph  ->  ( B  e.  ~P B 
<->  B  C_  B )
)
128, 11mpbiri 225 . . . . . 6  |-  ( ph  ->  B  e.  ~P B
)
134, 12ffvelrnd 5863 . . . . 5  |-  ( ph  ->  ( F `  B
)  e.  ~P B
)
1413elpwid 3800 . . . 4  |-  ( ph  ->  ( F `  B
)  C_  B )
15 vex 2951 . . . . . . . 8  |-  x  e. 
_V
1615elpw 3797 . . . . . . 7  |-  ( x  e.  ~P B  <->  x  C_  B
)
17 ismrcd.e . . . . . . 7  |-  ( (
ph  /\  x  C_  B
)  ->  x  C_  ( F `  x )
)
1816, 17sylan2b 462 . . . . . 6  |-  ( (
ph  /\  x  e.  ~P B )  ->  x  C_  ( F `  x
) )
1918ralrimiva 2781 . . . . 5  |-  ( ph  ->  A. x  e.  ~P  B x  C_  ( F `
 x ) )
20 id 20 . . . . . . 7  |-  ( x  =  B  ->  x  =  B )
21 fveq2 5720 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
2220, 21sseq12d 3369 . . . . . 6  |-  ( x  =  B  ->  (
x  C_  ( F `  x )  <->  B  C_  ( F `  B )
) )
2322rspcva 3042 . . . . 5  |-  ( ( B  e.  ~P B  /\  A. x  e.  ~P  B x  C_  ( F `
 x ) )  ->  B  C_  ( F `  B )
)
2412, 19, 23syl2anc 643 . . . 4  |-  ( ph  ->  B  C_  ( F `  B ) )
2514, 24eqssd 3357 . . 3  |-  ( ph  ->  ( F `  B
)  =  B )
26 ffn 5583 . . . . 5  |-  ( F : ~P B --> ~P B  ->  F  Fn  ~P B
)
274, 26syl 16 . . . 4  |-  ( ph  ->  F  Fn  ~P B
)
28 fnelfp 26727 . . . 4  |-  ( ( F  Fn  ~P B  /\  B  e.  ~P B )  ->  ( B  e.  dom  ( F  i^i  _I  )  <->  ( F `  B )  =  B ) )
2927, 12, 28syl2anc 643 . . 3  |-  ( ph  ->  ( B  e.  dom  ( F  i^i  _I  )  <->  ( F `  B )  =  B ) )
3025, 29mpbird 224 . 2  |-  ( ph  ->  B  e.  dom  ( F  i^i  _I  ) )
31 simp2 958 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  C_  dom  ( F  i^i  _I  ) )
3273ad2ant1 978 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  dom  ( F  i^i  _I  )  C_  ~P B )
3331, 32sstrd 3350 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  C_  ~P B
)
34 simp3 959 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
z  =/=  (/) )
35 intssuni2 4067 . . . . . . . . . . . 12  |-  ( ( z  C_  ~P B  /\  z  =/=  (/) )  ->  |^| z  C_  U. ~P B )
3633, 34, 35syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  U. ~P B )
37 unipw 4406 . . . . . . . . . . 11  |-  U. ~P B  =  B
3836, 37syl6sseq 3386 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  B )
39 intex 4348 . . . . . . . . . . . 12  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
40 elpwg 3798 . . . . . . . . . . . 12  |-  ( |^| z  e.  _V  ->  (
|^| z  e.  ~P B 
<-> 
|^| z  C_  B
) )
4139, 40sylbi 188 . . . . . . . . . . 11  |-  ( z  =/=  (/)  ->  ( |^| z  e.  ~P B  <->  |^| z  C_  B )
)
42413ad2ant3 980 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( |^| z  e.  ~P B 
<-> 
|^| z  C_  B
) )
4338, 42mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  e.  ~P B )
4443adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  |^| z  e.  ~P B )
45 ismrcd.m . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)
46453expib 1156 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  C_  B  /\  y  C_  x
)  ->  ( F `  y )  C_  ( F `  x )
) )
4746alrimiv 1641 . . . . . . . . . 10  |-  ( ph  ->  A. y ( ( x  C_  B  /\  y  C_  x )  -> 
( F `  y
)  C_  ( F `  x ) ) )
48473ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. y ( ( x 
C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x
) ) )
4948adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  A. y
( ( x  C_  B  /\  y  C_  x
)  ->  ( F `  y )  C_  ( F `  x )
) )
5033sselda 3340 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  e.  ~P B )
5150elpwid 3800 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  C_  B )
52 intss1 4057 . . . . . . . . . 10  |-  ( x  e.  z  ->  |^| z  C_  x )
5352adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  |^| z  C_  x )
5451, 53jca 519 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  (
x  C_  B  /\  |^| z  C_  x )
)
55 sseq1 3361 . . . . . . . . . . 11  |-  ( y  =  |^| z  -> 
( y  C_  x  <->  |^| z  C_  x )
)
5655anbi2d 685 . . . . . . . . . 10  |-  ( y  =  |^| z  -> 
( ( x  C_  B  /\  y  C_  x
)  <->  ( x  C_  B  /\  |^| z  C_  x
) ) )
57 fveq2 5720 . . . . . . . . . . 11  |-  ( y  =  |^| z  -> 
( F `  y
)  =  ( F `
 |^| z ) )
5857sseq1d 3367 . . . . . . . . . 10  |-  ( y  =  |^| z  -> 
( ( F `  y )  C_  ( F `  x )  <->  ( F `  |^| z
)  C_  ( F `  x ) ) )
5956, 58imbi12d 312 . . . . . . . . 9  |-  ( y  =  |^| z  -> 
( ( ( x 
C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x
) )  <->  ( (
x  C_  B  /\  |^| z  C_  x )  ->  ( F `  |^| z )  C_  ( F `  x )
) ) )
6059spcgv 3028 . . . . . . . 8  |-  ( |^| z  e.  ~P B  ->  ( A. y ( ( x  C_  B  /\  y  C_  x )  ->  ( F `  y )  C_  ( F `  x )
)  ->  ( (
x  C_  B  /\  |^| z  C_  x )  ->  ( F `  |^| z )  C_  ( F `  x )
) ) )
6144, 49, 54, 60syl3c 59 . . . . . . 7  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  |^| z ) 
C_  ( F `  x ) )
6231sselda 3340 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  x  e.  dom  ( F  i^i  _I  ) )
63273ad2ant1 978 . . . . . . . . . 10  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  F  Fn  ~P B
)
6463adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  F  Fn  ~P B )
65 fnelfp 26727 . . . . . . . . 9  |-  ( ( F  Fn  ~P B  /\  x  e.  ~P B )  ->  (
x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
6664, 50, 65syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  (
x  e.  dom  ( F  i^i  _I  )  <->  ( F `  x )  =  x ) )
6762, 66mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  x )  =  x )
6861, 67sseqtrd 3376 . . . . . 6  |-  ( ( ( ph  /\  z  C_ 
dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  /\  x  e.  z )  ->  ( F `  |^| z ) 
C_  x )
6968ralrimiva 2781 . . . . 5  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. x  e.  z 
( F `  |^| z )  C_  x
)
70 ssint 4058 . . . . 5  |-  ( ( F `  |^| z
)  C_  |^| z  <->  A. x  e.  z  ( F `  |^| z )  C_  x )
7169, 70sylibr 204 . . . 4  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( F `  |^| z )  C_  |^| z
)
72193ad2ant1 978 . . . . 5  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  A. x  e.  ~P  B x  C_  ( F `
 x ) )
73 id 20 . . . . . . 7  |-  ( x  =  |^| z  ->  x  =  |^| z )
74 fveq2 5720 . . . . . . 7  |-  ( x  =  |^| z  -> 
( F `  x
)  =  ( F `
 |^| z ) )
7573, 74sseq12d 3369 . . . . . 6  |-  ( x  =  |^| z  -> 
( x  C_  ( F `  x )  <->  |^| z  C_  ( F `  |^| z ) ) )
7675rspcva 3042 . . . . 5  |-  ( (
|^| z  e.  ~P B  /\  A. x  e. 
~P  B x  C_  ( F `  x ) )  ->  |^| z  C_  ( F `  |^| z
) )
7743, 72, 76syl2anc 643 . . . 4  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  C_  ( F `
 |^| z ) )
7871, 77eqssd 3357 . . 3  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( F `  |^| z )  =  |^| z )
79 fnelfp 26727 . . . 4  |-  ( ( F  Fn  ~P B  /\  |^| z  e.  ~P B )  ->  ( |^| z  e.  dom  ( F  i^i  _I  )  <->  ( F `  |^| z
)  =  |^| z
) )
8063, 43, 79syl2anc 643 . . 3  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  -> 
( |^| z  e.  dom  ( F  i^i  _I  )  <->  ( F `  |^| z
)  =  |^| z
) )
8178, 80mpbird 224 . 2  |-  ( (
ph  /\  z  C_  dom  ( F  i^i  _I  )  /\  z  =/=  (/) )  ->  |^| z  e.  dom  ( F  i^i  _I  )
)
827, 30, 81ismred 13819 1  |-  ( ph  ->  dom  ( F  i^i  _I  )  e.  (Moore `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   _Vcvv 2948    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   |^|cint 4042    _I cid 4485   dom cdm 4870    Fn wfn 5441   -->wf 5442   ` cfv 5446  Moorecmre 13799
This theorem is referenced by:  ismrcd2  26744  istopclsd  26745  ismrc  26746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-mre 13803
  Copyright terms: Public domain W3C validator