Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Unicode version

Theorem ismrer1 26484
Description: An isometry between  RR and  RR ^ 1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
ismrer1.2  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
Assertion
Ref Expression
ismrer1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    R( x)    F( x)    V( x)

Proof of Theorem ismrer1
Dummy variables  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3817 . . . . . . . 8  |-  ( y  =  A  ->  { y }  =  { A } )
21xpeq1d 4892 . . . . . . 7  |-  ( y  =  A  ->  ( { y }  X.  { x } )  =  ( { A }  X.  { x }
) )
32mpteq2dv 4288 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { A }  X.  {
x } ) ) )
4 ismrer1.2 . . . . . 6  |-  F  =  ( x  e.  RR  |->  ( { A }  X.  { x } ) )
53, 4syl6eqr 2485 . . . . 5  |-  ( y  =  A  ->  (
x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F )
6 f1oeq1 5656 . . . . 5  |-  ( ( x  e.  RR  |->  ( { y }  X.  { x } ) )  =  F  -> 
( ( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
75, 6syl 16 . . . 4  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { y } ) ) )
81oveq2d 6088 . . . . 5  |-  ( y  =  A  ->  ( RR  ^m  { y } )  =  ( RR 
^m  { A }
) )
9 f1oeq3 5658 . . . . 5  |-  ( ( RR  ^m  { y } )  =  ( RR  ^m  { A } )  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
108, 9syl 16 . . . 4  |-  ( y  =  A  ->  ( F : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
117, 10bitrd 245 . . 3  |-  ( y  =  A  ->  (
( x  e.  RR  |->  ( { y }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )  <->  F : RR
-1-1-onto-> ( RR  ^m  { A } ) ) )
12 eqid 2435 . . . 4  |-  { y }  =  { y }
13 reex 9070 . . . 4  |-  RR  e.  _V
14 vex 2951 . . . 4  |-  y  e. 
_V
15 eqid 2435 . . . 4  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) )  =  ( x  e.  RR  |->  ( { y }  X.  { x } ) )
1612, 13, 14, 15mapsnf1o3 7053 . . 3  |-  ( x  e.  RR  |->  ( { y }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  {
y } )
1711, 16vtoclg 3003 . 2  |-  ( A  e.  V  ->  F : RR -1-1-onto-> ( RR  ^m  { A } ) )
18 sneq 3817 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
1918xpeq2d 4893 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { y } ) )
20 snex 4397 . . . . . . . . . . . . . . . . 17  |-  { A }  e.  _V
21 snex 4397 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  _V
2220, 21xpex 4981 . . . . . . . . . . . . . . . 16  |-  ( { A }  X.  {
x } )  e. 
_V
2319, 4, 22fvmpt3i 5800 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( { A }  X.  { y } ) )
2423fveq1d 5721 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
( F `  y
) `  A )  =  ( ( { A }  X.  {
y } ) `  A ) )
2524adantr 452 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  y ) `  A
)  =  ( ( { A }  X.  { y } ) `
 A ) )
26 snidg 3831 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  A  e.  { A } )
27 fvconst2g 5936 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2814, 26, 27sylancr 645 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { y } ) `
 A )  =  y )
2925, 28sylan9eqr 2489 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y ) `  A )  =  y )
30 sneq 3817 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  { x }  =  { z } )
3130xpeq2d 4893 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( { A }  X.  {
x } )  =  ( { A }  X.  { z } ) )
3231, 4, 22fvmpt3i 5800 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( { A }  X.  { z } ) )
3332fveq1d 5721 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  ->  (
( F `  z
) `  A )  =  ( ( { A }  X.  {
z } ) `  A ) )
3433adantl 453 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( F `  z ) `  A
)  =  ( ( { A }  X.  { z } ) `
 A ) )
35 vex 2951 . . . . . . . . . . . . . 14  |-  z  e. 
_V
36 fvconst2g 5936 . . . . . . . . . . . . . 14  |-  ( ( z  e.  _V  /\  A  e.  { A } )  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3735, 26, 36sylancr 645 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( { A }  X.  { z } ) `
 A )  =  z )
3834, 37sylan9eqr 2489 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  z ) `  A )  =  z )
3929, 38oveq12d 6090 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) )  =  ( y  -  z
) )
4039oveq1d 6087 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( y  -  z ) ^ 2 ) )
41 resubcl 9354 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  z
)  e.  RR )
4241adantl 453 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  RR )
43 absresq 12095 . . . . . . . . . . 11  |-  ( ( y  -  z )  e.  RR  ->  (
( abs `  (
y  -  z ) ) ^ 2 )  =  ( ( y  -  z ) ^
2 ) )
4442, 43syl 16 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  =  ( ( y  -  z
) ^ 2 ) )
4540, 44eqtr4d 2470 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  =  ( ( abs `  (
y  -  z ) ) ^ 2 ) )
4642recnd 9103 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y  -  z )  e.  CC )
4746abscld 12226 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  RR )
4847recnd 9103 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( abs `  ( y  -  z
) )  e.  CC )
4948sqcld 11509 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( abs `  ( y  -  z ) ) ^
2 )  e.  CC )
5045, 49eqeltrd 2509 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( (
( ( F `  y ) `  A
)  -  ( ( F `  z ) `
 A ) ) ^ 2 )  e.  CC )
51 fveq2 5719 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  y
) `  k )  =  ( ( F `
 y ) `  A ) )
52 fveq2 5719 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( F `  z
) `  k )  =  ( ( F `
 z ) `  A ) )
5351, 52oveq12d 6090 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) )  =  ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) )
5453oveq1d 6087 . . . . . . . . 9  |-  ( k  =  A  ->  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5554sumsn 12522 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 )  e.  CC )  ->  sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 )  =  ( ( ( ( F `  y ) `
 A )  -  ( ( F `  z ) `  A
) ) ^ 2 ) )
5650, 55syldan 457 . . . . . . 7  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( ( ( F `  y
) `  A )  -  ( ( F `
 z ) `  A ) ) ^
2 ) )
5756, 45eqtrd 2467 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  sum_ k  e. 
{ A }  (
( ( ( F `
 y ) `  k )  -  (
( F `  z
) `  k )
) ^ 2 )  =  ( ( abs `  ( y  -  z
) ) ^ 2 ) )
5857fveq2d 5723 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( sqr `  (
( abs `  (
y  -  z ) ) ^ 2 ) ) )
5946absge0d 12234 . . . . . 6  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  0  <_  ( abs `  ( y  -  z ) ) )
6047, 59sqrsqd 12210 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr `  ( ( abs `  (
y  -  z ) ) ^ 2 ) )  =  ( abs `  ( y  -  z
) ) )
6158, 60eqtrd 2467 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( sqr ` 
sum_ k  e.  { A }  ( (
( ( F `  y ) `  k
)  -  ( ( F `  z ) `
 k ) ) ^ 2 ) )  =  ( abs `  (
y  -  z ) ) )
62 f1of 5665 . . . . . . . 8  |-  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  ->  F : RR --> ( RR  ^m  { A } ) )
6317, 62syl 16 . . . . . . 7  |-  ( A  e.  V  ->  F : RR --> ( RR  ^m  { A } ) )
6463ffvelrnda 5861 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  RR )  ->  ( F `  y
)  e.  ( RR 
^m  { A }
) )
6563ffvelrnda 5861 . . . . . 6  |-  ( ( A  e.  V  /\  z  e.  RR )  ->  ( F `  z
)  e.  ( RR 
^m  { A }
) )
6664, 65anim12dan 811 . . . . 5  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) ) )
67 snfi 7178 . . . . . 6  |-  { A }  e.  Fin
68 eqid 2435 . . . . . . 7  |-  ( RR 
^m  { A }
)  =  ( RR 
^m  { A }
)
6968rrnmval 26474 . . . . . 6  |-  ( ( { A }  e.  Fin  /\  ( F `  y )  e.  ( RR  ^m  { A } )  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7067, 69mp3an1 1266 . . . . 5  |-  ( ( ( F `  y
)  e.  ( RR 
^m  { A }
)  /\  ( F `  z )  e.  ( RR  ^m  { A } ) )  -> 
( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
7166, 70syl 16 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )
( Rn `  { A } ) ( F `
 z ) )  =  ( sqr `  sum_ k  e.  { A }  ( ( ( ( F `  y
) `  k )  -  ( ( F `
 z ) `  k ) ) ^
2 ) ) )
72 ismrer1.1 . . . . . 6  |-  R  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
7372remetdval 18808 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y R z )  =  ( abs `  ( y  -  z
) ) )
7473adantl 453 . . . 4  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( abs `  (
y  -  z ) ) )
7561, 71, 743eqtr4rd 2478 . . 3  |-  ( ( A  e.  V  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( y R z )  =  ( ( F `  y ) ( Rn
`  { A }
) ( F `  z ) ) )
7675ralrimivva 2790 . 2  |-  ( A  e.  V  ->  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) )
7772rexmet 18810 . . 3  |-  R  e.  ( * Met `  RR )
7868rrnmet 26475 . . . 4  |-  ( { A }  e.  Fin  ->  ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) ) )
79 metxmet 18352 . . . 4  |-  ( ( Rn `  { A } )  e.  ( Met `  ( RR 
^m  { A }
) )  ->  ( Rn `  { A }
)  e.  ( * Met `  ( RR 
^m  { A }
) ) )
8067, 78, 79mp2b 10 . . 3  |-  ( Rn
`  { A }
)  e.  ( * Met `  ( RR 
^m  { A }
) )
81 isismty 26447 . . 3  |-  ( ( R  e.  ( * Met `  RR )  /\  ( Rn `  { A } )  e.  ( * Met `  ( RR  ^m  { A }
) ) )  -> 
( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR
-1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) ) )
8277, 80, 81mp2an 654 . 2  |-  ( F  e.  ( R  Ismty  ( Rn `  { A } ) )  <->  ( F : RR -1-1-onto-> ( RR  ^m  { A } )  /\  A. y  e.  RR  A. z  e.  RR  ( y R z )  =  ( ( F `  y
) ( Rn `  { A } ) ( F `  z ) ) ) )
8317, 76, 82sylanbrc 646 1  |-  ( A  e.  V  ->  F  e.  ( R  Ismty  ( Rn
`  { A }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   {csn 3806    e. cmpt 4258    X. cxp 4867    |` cres 4871    o. ccom 4873   -->wf 5441   -1-1-onto->wf1o 5444   ` cfv 5445  (class class class)co 6072    ^m cmap 7009   Fincfn 7100   CCcc 8977   RRcr 8978    - cmin 9280   2c2 10038   ^cexp 11370   sqrcsqr 12026   abscabs 12027   sum_csu 12467   * Metcxmt 16674   Metcme 16675    Ismty cismty 26444   Rncrrn 26471
This theorem is referenced by:  reheibor  26485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-xadd 10700  df-ico 10911  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-xmet 16683  df-met 16684  df-ismty 26445  df-rrn 26472
  Copyright terms: Public domain W3C validator