Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iso0 Unicode version

Theorem iso0 26868
Description: The empty set is an  R ,  S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
iso0  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )

Proof of Theorem iso0
StepHypRef Expression
1 f1o0 5413 . 2  |-  (/) : (/) -1-1-onto-> (/)
2 ral0 3500 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <-> 
( (/) `  x ) S ( (/) `  y
) )
3 df-isom 4655 . 2  |-  ( (/)  Isom 
R ,  S  (
(/) ,  (/) )  <->  ( (/) : (/) -1-1-onto-> (/)  /\  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <->  ( (/) `  x
) S ( (/) `  y ) ) ) )
41, 2, 3mpbir2an 891 1  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   A.wral 2516   (/)c0 3397   class class class wbr 3963   -1-1-onto->wf1o 4637   ` cfv 4638    Isom wiso 4639
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-isom 4655
  Copyright terms: Public domain W3C validator