MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv Unicode version

Theorem isocnv 5843
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )

Proof of Theorem isocnv
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5501 . . . 4  |-  ( H : A -1-1-onto-> B  ->  `' H : B -1-1-onto-> A )
21adantr 451 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  `' H : B -1-1-onto-> A )
3 f1ocnvfv2 5809 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  B )  ->  ( H `  ( `' H `  z ) )  =  z )
43adantrr 697 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  z )
)  =  z )
5 f1ocnvfv2 5809 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  B )  ->  ( H `  ( `' H `  w ) )  =  w )
65adantrl 696 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  w )
)  =  w )
74, 6breq12d 4052 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
87adantlr 695 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
9 f1of 5488 . . . . . . 7  |-  ( `' H : B -1-1-onto-> A  ->  `' H : B --> A )
101, 9syl 15 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  `' H : B --> A )
11 ffvelrn 5679 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  z  e.  B )  ->  ( `' H `  z )  e.  A
)
12 ffvelrn 5679 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  w  e.  B )  ->  ( `' H `  w )  e.  A
)
1311, 12anim12dan 810 . . . . . . . 8  |-  ( ( `' H : B --> A  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
) )
14 breq1 4042 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
x R y  <->  ( `' H `  z ) R y ) )
15 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  ( `' H `  z )  ->  ( H `  x )  =  ( H `  ( `' H `  z ) ) )
1615breq1d 4049 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  y
) ) )
1714, 16bibi12d 312 . . . . . . . . . 10  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) ) ) )
18 bicom 191 . . . . . . . . . 10  |-  ( ( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) )
1917, 18syl6bb 252 . . . . . . . . 9  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) ) )
20 fveq2 5541 . . . . . . . . . . 11  |-  ( y  =  ( `' H `  w )  ->  ( H `  y )  =  ( H `  ( `' H `  w ) ) )
2120breq2d 4051 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  ( `' H `  w ) ) ) )
22 breq2 4043 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( `' H `  z ) R y  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2321, 22bibi12d 312 . . . . . . . . 9  |-  ( y  =  ( `' H `  w )  ->  (
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y )  <->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
2419, 23rspc2va 2904 . . . . . . . 8  |-  ( ( ( ( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2513, 24sylan 457 . . . . . . 7  |-  ( ( ( `' H : B
--> A  /\  ( z  e.  B  /\  w  e.  B ) )  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2625an32s 779 . . . . . 6  |-  ( ( ( `' H : B
--> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  (
z  e.  B  /\  w  e.  B )
)  ->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2710, 26sylanl1 631 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
288, 27bitr3d 246 . . . 4  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z S w  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2928ralrimivva 2648 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) )
302, 29jca 518 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
31 df-isom 5280 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32 df-isom 5280 . 2  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
3330, 31, 323imtr4i 257 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039   `'ccnv 4704   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272
This theorem is referenced by:  isores1  5847  isofr  5855  isose  5856  isopo  5859  isoso  5861  weisoeq  5869  weisoeq2  5870  fnwelem  6246  oieu  7270  oemapwe  7412  cantnffval2  7413  wemapwe  7416  infxpenlem  7657  fpwwe2lem7  8274  fpwwe2lem9  8276  infmsup  9748  ltweuz  11040  fz1isolem  11415  ordthmeo  17509  relogiso  19967  erdsze2lem2  23750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280
  Copyright terms: Public domain W3C validator