MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr Unicode version

Theorem isofr 6048
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
<->  S  Fr  B ) )

Proof of Theorem isofr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isocnv 6036 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 id 20 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
3 isof1o 6031 . . . . 5  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H : B -1-1-onto-> A )
4 f1ofun 5662 . . . . 5  |-  ( `' H : B -1-1-onto-> A  ->  Fun  `' H )
5 vex 2946 . . . . . 6  |-  x  e. 
_V
65funimaex 5517 . . . . 5  |-  ( Fun  `' H  ->  ( `' H " x )  e.  _V )
73, 4, 63syl 19 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( `' H " x )  e.  _V )
82, 7isofrlem 6046 . . 3  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( R  Fr  A  ->  S  Fr  B ) )
91, 8syl 16 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A  ->  S  Fr  B
) )
10 id 20 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  R ,  S  ( A ,  B ) )
11 isof1o 6031 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
12 f1ofun 5662 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
135funimaex 5517 . . . 4  |-  ( Fun 
H  ->  ( H " x )  e.  _V )
1411, 12, 133syl 19 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( H "
x )  e.  _V )
1510, 14isofrlem 6046 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Fr  B  ->  R  Fr  A
) )
169, 15impbid 184 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
<->  S  Fr  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1725   _Vcvv 2943    Fr wfr 4525   `'ccnv 4863   "cima 4867   Fun wfun 5434   -1-1-onto->wf1o 5439    Isom wiso 5441
This theorem is referenced by:  isowe  6055  wofib  7498  isfin1-4  8251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-id 4485  df-fr 4528  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449
  Copyright terms: Public domain W3C validator